skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martin, David V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Precise and accurate mass and radius measurements of evolved stars are crucial to calibrating stellar models. Stars in detached eclipsing binaries (EBs) are excellent potential calibrators because their stellar parameters can be measured with fractional uncertainties of a few percent, independent of stellar models. The All-Sky Automated Survey for Supernovae (ASAS-SN) has identified tens of thousands of EBs, >35,000 of which were included in the ASAS-SN eclipsing binaries catalog. Here, we select eight EBs from this sample that contain giants based on their Gaia colors and absolute magnitudes. We use LBT/PEPSI, APF, and CHIRON to obtain multi-epoch spectra of these binaries and measure their radial velocities using two-dimensional cross-correlation methods. We simultaneously fit the ASAS-SN light curves and the radial velocities with PHOEBE to derive accurate and precise masses and radii with fractional uncertainties of 3 % . For four systems, we also include Transiting Exoplanet Survey Satellite (TESS) light curves in our PHOEBE models, which significantly improves the radius determinations. In seven of our systems, both components have evolved off of the main sequence, and one system has a giant star component with a main sequence, Sun-like companion. Finally, we compare our mass and radius measurements to single-star evolutionary tracks and distinguish between systems that are first ascent red giant branch stars and those that are likely core helium-burning stars. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. ABSTRACT The identification and characterization of massive (≳ 0.8 M⊙) white dwarfs is challenging in part due to their low luminosity. Here, we present two candidate single-lined spectroscopic binaries, Gaia DR3 4014708864481651840 and 5811237403155163520, with K-dwarf primaries and optically dark companions. Both have orbital periods of P ∼ 0.45 d and show rotational variability, ellipsoidal modulations, and high-amplitude radial velocity variations. Using light curves from the Transiting Exoplanet Survey Satellite (TESS), radial velocities from ground-based spectrographs, and spectral energy distributions, we characterize these binaries to describe the nature of the unseen companion. We find that both systems are consistent with a massive white dwarf companion. Unlike simple ellipsoidal variables, star-spots cause the light-curve morphology to change between TESS sectors. We attempt to constrain the orbital inclination using phoebe binary light-curve models, but degeneracies in the light curves of spotted stars prevent a precise determination. Finally, we search for similar objects using Gaia DR3 and TESS, and comment on these systems in the context of recently claimed compact object binaries. 
    more » « less
  3. ABSTRACT TOI-1259 consists of a transiting exoplanet orbiting a main-sequence star, with a bound outer white dwarf (WDs) companion. Less than a dozen systems with this architecture are known. We conduct follow-up spectroscopy on the WD TOI-1259B using the Large Binocular Telescope to better characterize it. We observe only strong hydrogen lines, making TOI-1259B a DA WD. We see no evidence of heavy element pollution, which would have been evidence of planetary material around the WD. Such pollution is seen in $$\sim 25{-}50{{\ \rm per\ cent}}$$ of WDs, but it is unknown if this rate is higher or lower in TOI-1259-like systems that contain a known planet. Our spectroscopy permits an improved WD age measurement of $$4.05^{+1.00}_{-0.42}$$ Gyr, which matches gyrochronology of the main-sequence star. This is the first of an expanded sample of similar binaries that will allow us to calibrate these dating methods and provide a new perspective on planets in binaries. 
    more » « less