skip to main content


Search for: All records

Creators/Authors contains: "Martin, Jonathan E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Previous research regarding the intraseasonal variability of the wintertime Pacific jet has employed empiri- cal orthogonal function (EOF)/principal component (PC) analysis to characterize two leading modes of variability: a zonal extension or retraction and a ;208 meridional shift of the jet exit region. These leading modes are intimately tied to the large-scale structure, sensible weather phenomena, and forecast skill in and around the vast North Pacific basin. However, variability within the wintertime Pacific jet and the relative importance of tropical and extratropical processes in driving such variability, is poorly understood. Here, a self-organizing maps (SOM) analysis is applied to 73 Northern Hemisphere cold seasons of 250-hPa zonal winds from the NCEP–NCAR reanalysis data to identify 12 characteristic physical jet states, some of which resemble the leading EOF Pacific jet patterns and combinations of them. Examination of teleconnection patterns such as El Nin ̃o–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) provide insight into the varying nature of the 12 SOM nodes at inter- and intraseasonal time scales. These relationships suggest that the hitherto more common EOF/PC analysis of jet variability obscures important subtleties of jet structure, revealed by the SOM analy- sis, which bear on the underlying physical processes associated with Pacific jet variability as well as the nature of its down- stream impacts. 
    more » « less
  2. Previous research regarding the intraseasonal variability of the wintertime Pacific jet has employed empiri- cal orthogonal function (EOF)/principal component (PC) analysis to characterize two leading modes of variability: a zonal extension or retraction and a ;208 meridional shift of the jet exit region. These leading modes are intimately tied to the large-scale structure, sensible weather phenomena, and forecast skill in and around the vast North Pacific basin. However, variability within the wintertime Pacific jet and the relative importance of tropical and extratropical processes in driving such variability, is poorly understood. Here, a self-organizing maps (SOM) analysis is applied to 73 Northern Hemisphere cold seasons of 250-hPa zonal winds from the NCEP–NCAR reanalysis data to identify 12 characteristic physical jet states, some of which resemble the leading EOF Pacific jet patterns and combinations of them. Examination of teleconnection patterns such as El Nin ̃o–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) provide insight into the varying nature of the 12 SOM nodes at inter- and intraseasonal time scales. These relationships suggest that the hitherto more common EOF/PC analysis of jet variability obscures important subtleties of jet structure, revealed by the SOM analy- sis, which bear on the underlying physical processes associated with Pacific jet variability as well as the nature of its down- stream impacts. 
    more » « less
  3. Extratropical cyclones develop in regions of enhanced baroclinicity and progress along climatological storm tracks. Numerous studies have noted an influence of terrestrial snow cover on atmospheric baroclinicity. However, these studies have less typically examined the role that continental snow cover extent and changes anticipated with anthropogenic climate change have on cyclones’ intensities, trajectories, and precipitation characteristics. Here, we examined how projected future poleward shifts in North American snow extent influence extratropical cyclones. We imposed 10th, 50th, and 90th percentile values of snow retreat between the late 20th and 21st centuries as projected by 14 Coupled Model Intercomparison Project Phase Five (CMIP5) models to alter snow extent underlying 15 historical cold-season cyclones that tracked over the North American Great Plains and were faithfully reproduced in control model cases, providing a comprehensive set of model runs to evaluate hypotheses. Simulations by the Advanced Research version of the Weather Research and Forecast Model (WRF-ARW) were initialized at four days prior to cyclogenesis. Cyclone trajectories moved on average poleward (μ = 27 +/− σ = 17 km) in response to reduced snow extent while the maximum sea-level pressure deepened (μ = −0.48 +/− σ = 0.8 hPa) with greater snow removed. A significant linear correlation was observed between the area of snow removed and mean trajectory deviation (r2 = 0.23), especially in mid-winter (r2 = 0.59), as well as a similar relationship for maximum change in sea-level pressure (r2 = 0.17). Across all simulations, 82% of the perturbed simulation cyclones decreased in average central sea-level pressure (SLP) compared to the corresponding control simulation. Near-surface wind speed increased, as did precipitation, in 86% of cases with a preferred phase change from the solid to liquid state due to warming, although the trends did not correlate with the snow retreat magnitude. Our results, consistent with prior studies noting some role for the enhanced baroclinity of the snow line in modulating storm track and intensity, provide a benchmark to evaluate future snow cover retreat impacts on mid-latitude weather systems. 
    more » « less
  4. Abstract

    A feature‐based metric of the waviness of the wintertime, Northern Hemisphere polar, and subtropical jets is developed and applied to three different reanalysis data sets. The analysis first identifies a “core isertel” along which the circulation per unit length is maximized in the separate polar (315:330K) and subtropical (340:355K) jet isentropic layers. Since the core isertel is, by design, an analytical proxy for the respective jet cores, the waviness of each jet is derived by calculating a hemispheric average of the meridional displacements of the core isertel from its equivalent latitude—the southern extent of a polar cap whose area is equal to the area enclosed by the core isertel. Analysis of the seasonal average waviness over the time series of the various data sets reveals that both jets have become systematically wavier while exhibiting no trends in their average speeds. The waviness of each jet evolves fairly independently of the other in most cold seasons and the slow northward creep of the polar jet is statistically significant. Finally, comparison of the composites of the waviest and least wavy seasons for each species reveals that such interannual variability is manifest in familiar large‐scale circulation anomalies.

     
    more » « less
  5. null (Ed.)
    Abstract Previous research has found a relationship between the equatorward extent of snow cover and low-level baroclinicity, suggesting a link between the development and trajectory of midlatitude cyclones and the extent of preexisting snow cover. Midlatitude cyclones are more frequent 50–350 km south of the snow boundary, coincident with weak maxima in the environmental Eady growth rate. The snow line is projected to recede poleward with increasing greenhouse gas emissions, possibly affecting the development and track of midlatitude cyclones during Northern Hemisphere winter. Detailed examination of the physical implications of a modified snow boundary on the life cycle of individual storms has, to date, not been undertaken. This study investigates the impact of a receding snow boundary on two cyclogenesis events using Weather Research and Forecasting Model simulations initialized with observed and projected future changes to snow extent as a surface boundary condition. Potential vorticity diagnosis of the modified cyclone simulations isolates how changes in surface temperature, static stability, and relative vorticity arising from the altered boundary affect the developing cyclone. We find that the surface warm anomaly associated with snow removal lowered heights near the center of the two cyclones investigated, strengthening their cyclonic circulation. However, the direct effect of snow removal is mitigated by the stability response and an indirect relative vorticity response to snow removal. Because of these opposing effects, it is suggested that the immediate effect of receding snow cover on midlatitude cyclones is likely minimal and depends on the stage of the cyclone life cycle. 
    more » « less
  6. Abstract

    Vertical alignment of the polar and subtropical jet streams in the west Pacific basin occurs most often during the boreal cold season. Recent work has revealed that the large-scale environment conducive to producing such superpositions involves interaction between East Asian winter monsoon cold-surge events, lower-latitude convection, and internal jet dynamics. The evolution of the large-scale environments associated with these events post-superposition as well as the significance of that evolution on aspects of the wintertime Northern Hemisphere general circulation is examined through construction of a 44-case composite. The post-superposition west Pacific jet extends eastward associated with an anomalous positive–negative geopotential height couplet straddling the jet’s exit region. This jet extension results in ridge building over Alaska and northwestern Canada. The large-scale evolutions associated with the composite post-superposition environment occur consistently among the majority of cases considered within this analysis. The positive–negative geopotential height anomaly couplet, enhanced jet entrance circulation, low-latitude convection, and internal jet dynamics present in the pre-superposition environment weaken post-superposition. As a result, the characteristic vertical PV “wall” associated with the composite vertically superposed jet weakens. Last, investigation of the value of using the two most dominant modes of west Pacific jet variability in observing the evolution of the superposed west Pacific jet post-superposition reveals that, while the extension of the jet is exhibited, significant variability exists when analyzing each of the 44 cases of interest individually.

     
    more » « less
  7. null (Ed.)
    Abstract A polar–subtropical jet superposition represents a dynamical and thermodynamic environment conducive to the production of high-impact weather. Prior work indicates that the synoptic-scale environments that support the development of North American jet superpositions vary depending on the case under consideration. This variability motivates an analysis of the range of synoptic–dynamic mechanisms that operate within a double-jet environment to produce North American jet superpositions. This study identifies North American jet superposition events during November–March 1979–2010 and subsequently classifies those events into three characteristic event types. “Polar dominant” events are those during which only the polar jet is characterized by a substantial excursion from its climatological latitude band, “subtropical dominant” events are those during which only the subtropical jet is characterized by a substantial excursion from its climatological latitude band, and “hybrid” events are those characterized by a mutual excursion of both jets from their respective climatological latitude bands. The analysis indicates that North American jet superposition events occur most often during November and December, and subtropical dominant events are the most frequent event type for all months considered. Composite analyses constructed for each event type reveal the consistent role that descent plays in restructuring the tropopause beneath the jet-entrance region prior to jet superposition. The composite analyses further show that surface cyclogenesis and widespread precipitation lead the development of subtropical dominant events and contribute to jet superposition via their associated divergent circulations and diabatic heating, whereas surface cyclogenesis and widespread precipitation tend to peak at the time of superposition and well downstream of polar dominant events. 
    more » « less
  8. Atmospheric flows are often decomposed into balanced (low frequency) and unbalanced (high frequency) components. For a dry atmosphere, it is known that a single mode, the potential vorticity (PV), is enough to describe the balanced flow and determine its evolution. For a moist atmosphere with phase changes, on the other hand, balanced–unbalanced decompositions involve additional complexity. In this paper, we illustrate that additional balanced modes, beyond PV, arise from the moisture. To support and motivate the discussion, we consider balanced–unbalanced decompositions arising from a simplified Boussinesq numerical simulation and a hemispheric-sized channel simulation using the Weather Research and Forecasting (WRF) Model. One important role of the balanced moist modes is in the inversion principle that is used to recover the moist balanced flow: rather than traditional PV inversion that involves only the PV variable, it is PV-and- M inversion that is needed, involving M variables that describe the moist balanced modes. In examples of PV-and- M inversion, we show that one can decompose all significant atmospheric variables, including total water or water vapor, into balanced (vortical mode) and unbalanced (inertio-gravity wave) components. The moist inversion, thus, extends the traditional dry PV inversion to allow for moisture and phase changes. In addition, we illustrate that the moist balanced modes are essentially conserved quantities of the flow, and they act qualitatively as additional PV-like modes of the system that track balanced moisture. 
    more » « less
  9. A diagnostic method for calculating local geostrophic wind tendencies in a piecewise manner within the quasi‐geostrophic framework is introduced. The method is applied to a case‐study of a North Pacific jet retraction that occurred in February 2006, and suggests that nonlinear interactions, which are dependent upon the phasing between potential vorticity anomalies and height anomalies, can lead to a weakening of the jet. The synoptic context in which nonlinear advection weakens the jet is presented, revealing that a positively tilted wave train situated north of the jet is conducive to retraction. This circumstance is consistent with conditions associated with barotropic energy extraction in which the growth of eddies occurs at the expense of the kinetic energy of the mean state. The relationship between this new method and existing methods of assessing geostrophic wind tendencies is explored and, though broad consistency is found, importance differences are identified and considered.

     
    more » « less