skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marting, P. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Honey bees are renowned architects. The workers use expensive wax secretions to build their nests, which reach a mature, seemingly steady state, relatively quickly. After nest expansion is complete, workers do not tear down combs completely and begin anew, but there is the possibility they may make subtle changes like adding, removing, and repositioning existing wax. Previous work has focused on nest initiation and nest expansion, but here we focus on mature nests that have reached a steady-state. To investigate subtle changes to comb shape over time, we tracked six colonies from nest initiation through maturity (211 days), photographing their combs every 1–2 weeks. By aligning comb images over time, we show that workers continuously remove wax from the comb edges, thereby reducing total nest area over time. All six colonies trimmed comb edges, and 98.3% of combs were reduced (n = 59). Comb reduction began once workers stopped expanding their nests and continued throughout the experiment. The extent to which a comb was reduced did not correlate with its position within the nest, comb perimeter, or comb area. It is possible that workers use this removed wax as a reserve wax source, though this remains untested. These results show that the superorganism nest is not static; workers are constantly interacting with their nest, and altering it, even after nest expansion is complete. 
    more » « less