skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Martius, Olivia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the Northern Hemisphere, recurrence of transient Rossby wave packets over periods of days to weeks, termed RRWPs, may repeatedly create similar weather conditions. This recurrence leads to persistent surface anomalies and high-impact weather events. Here, we demonstrate the significance of RRWPs for persistent heatwaves in the Southern Hemisphere (SH). We investigate the relationship between RRWPs, atmospheric blocking, and amplified quasi-stationary Rossby waves with two cases of heatwaves in Southeast Australia (SEA) in 2004 and 2009. This region has seen extraordinary heatwaves in recent years. We also investigate the importance of transient systems such as RRWPs and two other persistent dynamical drivers: atmospheric blocks and quasi-resonant amplification (QRA). We further explore the link between RRWPs, blocks, and QRA in the SH using the ERA-I reanalysis dataset (1979–2018). We find that QRA and RRWPs are strongly associated: 40% of QRA days feature RRWPs, and QRA events are 13 times more likely to occur with an RRWPs event than without it. Furthermore, days with QRA and RRWPs show high correlations in the composite mean fields of upper-level flows, indicating that both features have a similar hemispheric flow configuration. Blocking frequencies for QRA and RRWP conditions both increase over the south Pacific Ocean but differ substantially over parts of the south Atlantic and Indian Ocean. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. The persistence of surface weather during several recent high-impact weather events has been pivotal in generating their societal impact. Here we examine Hovmöller diagrams of the 250-hPa meridional wind during several periods with particularly persistent surface weather and find a common pattern in these Hovmöller diagrams. This pattern can be characterized as a “recurrent Rossby wave pattern” (RRWP), arising from multiple transient synoptic-scale wave packets. During such RRWP periods, individual troughs and ridges forming the wave packets repeatedly amplify in the same geographical region. We discuss the synoptic evolution of two RRWP periods, in February–March 1987 and July–August 1994, and illustrate how the recurrence of the transient wave packets led to unusually long-lasting cold and hot spells, which occurred simultaneously in several regions, each separated by roughly one synoptic wavelength. Furthermore, a simple index termed R is proposed to identify RRWPs, which is based on both a time and wavenumber filter applied to conventional Hovmöller diagrams. A Weibull regression analysis then shows that large values of R are statistically significantly linked to increased durations of winter cold and summer hot spells in large areas of the Northern Hemisphere midlatitudes. Traditionally, persistent high-impact surface weather has often been linked to the occurrence of proximate atmospheric blocking. In contrast to blocking, RRWPs affect persistent surface temperature anomalies over multiple synoptic wavelengths. We therefore argue that, in addition to blocking, RRWPs should be considered as an important flow feature leading to persistent high-impact surface weather.

     
    more » « less