skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maruyama, Shumpei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The reef-building corals can thrive in nutrient-poor waters because of the mutualistic symbiosis between the animal hosts and their photosynthetic dinoflagellate endosymbionts. This symbiosis is threatened by climate change and other anthropogenic stressors, so that a deeper mechanistic understanding of its function is not only of great basic biological interest but also crucial for developing rational approaches to coral conservation. The small sea anemone Aiptasia is an attractive model system for studies of this symbiosis but has been limited to date by a lack of effective genetic methods. Here, we describe the use of a simple electroporation protocol to introduce various genetic constructs [plasmid DNAs, mRNAs, and short-hairpin (sh) RNAs] into Aiptasia zygotes. Plasmid-based expression of reporter constructs in the resulting larvae was highly mosaic. In contrast, electroporation of mRNAs into zygotes resulted in uniform expression within the larvae, and success rates were similar when single or multiple mRNAs were introduced. The shRNAs were effective in knocking down expression of both coelectroporated mRNAs and endogenous genes. In this way, we could confirm the previously reported role of BRACHYURY in cnidarian embryonic development. In addition, we could show that knockdown of an Aiptasia homologue of the lysosomal-associated membrane protein 1 interfered with larval uptake and/or retention of a symbiosis-compatible algal strain. The ability to use Aiptasia larvae for such reverse-genetic studies should greatly enhance the power of this model system and serve as a starting point for further development of genetic tools in Aiptasia and other cnidarians. 
    more » « less
  2. Many cnidarians rely on their dinoflagellate partners from the family Symbiodiniaceae for their ecological success. Symbiotic species of Symbiodiniaceae have two distinct life stages: inside the host, in hospite , and outside the host, ex hospite . Several aspects of cnidarian-algal symbiosis can be understood by comparing these two life stages. Most commonly, algae in culture are used in comparative studies to represent the ex hospite life stage, however, nutrition becomes a confounding variable for this comparison because algal culture media is nutrient rich, while algae in hospite are sampled from hosts maintained in oligotrophic seawater. In contrast to cultured algae, expelled algae may be a more robust representation of the ex hospite state, as the host and expelled algae are in the same seawater environment, removing differences in culture media as a confounding variable. Here, we studied the physiology of algae released from the sea anemone Exaiptasia diaphana (commonly called Aiptasia), a model system for the study of coral-algal symbiosis. In Aiptasia, algae are released in distinct pellets, referred to as egesta, and we explored its potential as an experimental system to represent Symbiodiniaceae in the ex hospite state. Observation under confocal and differential interference contrast microscopy revealed that egesta contained discharged nematocysts, host tissue, and were populated by a diversity of microbes, including protists and cyanobacteria. Further experiments revealed that egesta were released at night. In addition, algae in egesta had a higher mitotic index than algae in hospite , were photosynthetically viable for at least 48 hrs after expulsion, and could competently establish symbiosis with aposymbiotic Aiptasia. We then studied the gene expression of nutrient-related genes and studied their expression using qPCR. From the genes tested, we found that algae from egesta closely mirrored gene expression profiles of algae in hospite and were dissimilar to those of cultured algae, suggesting that algae from egesta are in a nutritional environment that is similar to their in hospite counterparts. Altogether, evidence is provided that algae from Aiptasia egesta are a robust representation of Symbiodiniaceae in the ex hospite state and their use in experiments can improve our understanding of cnidarian-algal symbiosis. 
    more » « less
  3. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT Corals owe their ecological success to their symbiotic relationship with dinoflagellate algae (family Symbiodiniaceae). While the negative effects of heat stress on this symbiosis are well studied, how heat stress affects the onset of symbiosis and symbiont specificity is less explored. In this work, we used the model sea anemone, Exaiptasia diaphana (commonly referred to as Aiptasia), and its native symbiont, Breviolum minutum , to study the effects of heat stress on the colonization of Aiptasia by algae and the algal cell-surface glycome. Heat stress caused a decrease in the colonization of Aiptasia by algae that were not due to confounding variables such as algal motility or oxidative stress. With mass spectrometric analysis and lectin staining, a thermally induced enrichment of glycans previously found to be associated with free-living strains of algae (high-mannoside glycans) and a concomitant reduction in glycans putatively associated with symbiotic strains of algae (galactosylated glycans) were identified. Differential enrichment of specific sialic acid glycans was also identified, although their role in this symbiosis remains unclear. We also discuss the methods used to analyze the cell-surface glycome of algae, evaluate current limitations, and provide suggestions for future work in algal-coral glycobiology. Overall, this study provided insight into how stress may affect the symbiosis between cnidarians and their algal symbionts by altering the glycome of the symbiodinian partner. IMPORTANCE Coral reefs are under threat from global climate change. Their decline is mainly caused by the fragility of their symbiotic relationship with dinoflagellate algae which they rely upon for their ecological success. To better understand coral biology, researchers used the sea anemone, Aiptasia, a model system for the study of coral-algal symbiosis, and characterized how heat stress can alter the algae's ability to communicate to the coral host. This study found that heat stress caused a decline in algal colonization success and impacted the cell surface molecules of the algae such that it became more like that of nonsymbiotic species of algae. This work adds to our understanding of the molecular signals involved in coral-algal symbiosis and how it breaks down during heat stress. 
    more » « less