Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Environmentally benign, highly stable oxides exhibiting desirable optical properties and high near-IR reflectance are being researched for their potential application as pigments. Mg1−xMxV2O6 (M = Mn, Cu, Co, or Ni) oxides with brannerite-type structures were synthesized by the conventional solid-state reaction method to study their optical properties. These series exhibit structural transitions from brannerite (C2/m) to distorted brannerite (P1¯) and NiV2O6-type (P1¯) structures. The average color of Mg1−xMxV2O6 compounds varies from reddish-yellow to brown to dark brown. The L*a*b* color coordinates reveal that Mg1−xCuxV2O6 and Mg1−xNixV2O6 show more red hues in color with x = 0.4 and x = 0.5, respectively. The UV–Vis diffuse reflectance spectra indicate a possible origin for these results include the ligand-to-metal charge transfer (O2− 2p-V5+ 3d), metal-to-metal charge transfer (from Mn2+ 3d/Cu2+ 3d/Co2+ 3d/Ni2+ 3d to V5+ 3d), band gap transitions, and d–d transitions. Magnetic property measurements revealed antiferromagnetic behavior for the compounds Mg1−xMxV2O6 (M = Mn, Cu, Co, and Ni), and an oxidation state of +2 for the M ions was deduced from their Curie–Weiss behavior. The system Mg1−xMnxV2O6 has a NIR reflectance in the range between 40% and 70%, indicating its potential to be utilized in the pigment industry.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The performance of the electromagnetic calorimeter of the ALICE experiment during operation in 2010–2018 at the Large Hadron Collider is presented. After a short introduction into the design, readout, and trigger capabilities of the detector, the procedures for data taking, reconstruction, and validation are explained. The methods used for the calibration and various derived corrections are presented in detail. Subsequently, the capabilities of the calorimeter to reconstruct and measure photons, light mesons, electrons and jets are discussed. The performance of the calorimeter is illustrated mainly with data obtained with test beams at the Proton Synchrotron and Super Proton Synchrotron or in proton-proton collisions at √s= 13 TeV, and compared to simulations.more » « less
An official website of the United States government
