Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 24, 2024
-
Abstract Nanophotonics research has focused recently on the ability of nonlinear optical processes to mediate and transform optical signals in a myriad of novel devices, including optical modulators, transducers, color filters, photodetectors, photon sources, and ultrafast optical switches. The inherent weakness of optical nonlinearities at smaller scales has, however, hindered the realization of efficient miniaturized devices, and strategies for enhancing both device efficiencies and synthesis throughput via nanoengineering remain limited. Here, we demonstrate a novel mechanism by which second harmonic generation, a prototypical nonlinear optical phenomenon, from individual lithium niobate particles can be significantly enhanced through nonradiative coupling to the localized surface plasmon resonances of embedded gold nanoparticles. A joint experimental and theoretical investigation of single mesoporous lithium niobate particles coated with a dispersed layer of ~10 nm diameter gold nanoparticles shows that a ~32-fold enhancement of second harmonic generation can be achieved without introducing finely tailored radiative nanoantennas to mediate photon transfer to or from the nonlinear material. This work highlights the limitations of current strategies for enhancing nonlinear optical phenomena and proposes a route through which a new class of subwavelength nonlinear optical platforms can be designed to maximize nonlinear efficiencies through near-field energy exchange.
-
Free, publicly-accessible full text available April 13, 2024
-
Optical Control over Thermal Distributions in Topologically Trivial and Non-Trivial Plasmon LatticesFree, publicly-accessible full text available November 16, 2023
-
Although photothermal imaging was originally designed to detect individual molecules that do not emit or small nanoparticles that do not scatter, the technique is now being applied to image and spectroscopically characterize larger and more sophisticated nanoparticle structures that scatter light strongly. Extending photothermal measurements into this regime, however, requires revisiting fundamental assumptions made in the interpretation of the signal. Herein, we present a theoretical analysis of the wavelength-resolved photothermal image and its extension to the large particle scattering regime, where we find the photothermal signal to inherit a nonlinear dependence upon pump intensity, together with a contraction of the full-width-at-half-maximum of its point spread function. We further analyze theoretically the extent to which photothermal spectra can be interpreted as an absorption spectrum measure, with deviations between the two becoming more prominent with increasing pump intensities. Companion experiments on individual 10, 20, and 100 nm radius gold nanoparticles evidence the predicted nonlinear pump power dependence and image contraction, verifying the theory and demonstrating new aspects of photothermal imaging relevant to a broader class of targets.more » « lessFree, publicly-accessible full text available January 14, 2024