Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long‐range and periodic arrangement of carbon atoms, thus, the characterization of graphitic carbon electrodes necessitatesin‐situatomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques ofin‐situattenuated total reflectance infrared spectroscopy and first‐principles calculations to reveal that graphitic carbon electrodes exhibit electric‐field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder. With this platform, we identify graphitic regions from amorphous domains by discovering that they demonstrate opposing electric‐field‐dependent infrared activity under electrochemical conditions. Our work provides a roadmap for identifying mesoscopic disorder in bulk carbon materials under potential bias.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Abstract Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. In this work, we present AlphaFlow, a self-driven fluidic lab capable of autonomous discovery of complex multi-step chemistries. AlphaFlow uses reinforcement learning integrated with a modular microdroplet reactor capable of performing reaction steps with variable sequence, phase separation, washing, and continuous in-situ spectral monitoring. To demonstrate the power of reinforcement learning toward high dimensionality multi-step chemistries, we use AlphaFlow to discover and optimize synthetic routes for shell-growth of core-shell semiconductor nanoparticles, inspired by colloidal atomic layer deposition (cALD). Without prior knowledge of conventional cALD parameters, AlphaFlow successfully identified and optimized a novel multi-step reaction route, with up to 40 parameters, that outperformed conventional sequences. Through this work, we demonstrate the capabilities of closed-loop, reinforcement learning-guided systems in exploring and solving challenges in multi-step nanoparticle syntheses, while relying solely on in-house generated data from a miniaturized microfluidic platform. Further application of AlphaFlow in multi-step chemistries beyond cALD can lead to accelerated fundamental knowledge generation as well as synthetic route discoveries and optimization.more » « less
-
Summary Leaf angle distribution (LAD) in forest canopies affects estimates of leaf area, light interception, and global‐scale photosynthesis, but is often simplified to a single theoretical value. Here, we present TLSLeAF (Terrestrial Laser Scanning Leaf Angle Function), an automated open‐source method of deriving LADs from terrestrial laser scanning.TLSLeAF produces canopy‐scale leaf angle and LADs by relying on gridded laser scanning data. The approach increases processing speed, improves angle estimates, and requires minimal user input. Key features are automation, leaf–wood classification, beta parameter output, and implementation in R to increase accessibility for the ecology community.TLSLeAF precisely estimates leaf angle with minimal distance effects on angular estimates while rapidly producing LADs on a consumer‐grade machine. We challenge the popular spherical LAD assumption, showing sensitivity to ecosystem type in plant area index and foliage profile estimates that translate toc. 25% andc. 11% increases in canopy net photosynthesis (c. 25%) and solar‐induced chlorophyll fluorescence (c. 11%).TLSLeAF can now be applied to the vast catalog of laser scanning data already available from ecosystems around the globe. The ease of use will enable widespread adoption of the method outside of remote‐sensing experts, allowing greater accessibility for addressing ecological hypotheses and large‐scale ecosystem modeling efforts.more » « less