Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 14, 2025
-
Free, publicly-accessible full text available June 9, 2025
-
As next-generation communication services and satellite systems expand across diverse frequency bands, the escalating utilization poses heightened interference risks to passive sensors crucial for environmental and atmospheric sensing. Consequently, there is a pressing need for efficient methodologies to detect, characterize, and mitigate the harmful impact of unwanted anthropogenic signals known as radio frequency interference (RFI) at microwave radiometers. One effective strategy to reduce such interference is to facilitate the coexistence of active and passive sensing systems. Such approach would greatly benefit from a testbed along with a dataset encompassing a diverse array of scenarios under controlled environment. This study presents a physical environmentally controlled testbed including a passive fully calibrated L-band radiometer with a digital back-end capable of collecting raw in-phase/quadrature (IQ) samples and an active fifth-generation (5G) wireless communication system with the capability of transmitting waveforms with advanced modulations. Various RFI scenarios such as in-band, transition-band, and out-of-band transmission effects are quantified in terms of calibrated brightness temperature. Raw radiometer and 5G communication samples along with preprocessed time-frequency representations and true brightness temperature data are organized and made publicly available. A detailed procedure and publicly accessible dataset are provided to help test the impact of wireless communication on passive sensing, enabling the scientific community to facilitate coexistence research and quantify interference effects on radiometers.more » « lessFree, publicly-accessible full text available September 2, 2025
-
In our ever-expanding world of advanced satellite and communications systems, there's a growing challenge for passive radiometer sensors used in the Earth observation like 5G. These passive sensors are challenged by risks from radio frequency interference (RFI) caused by anthropogenic signals. To address this, we urgently need effective methods to quantify the impacts of 5G on Earth observing radiometers. Unfortunately, the lack of substantial datasets in the radio frequency (RF) domain, especially for active/passive coexistence, hinders progress. Our study introduces a controlled testbed featuring a calibrated L-band radiometer and a 5G wireless communication system. In a controlled chamber, this unique setup allows us to observe and quantify transmission effects across different frequency bands. By creating a comprehensive dataset, we aim to standardize and benchmark both wireless communication and passive sensing. With the ability to analyze raw measurements, our testbed facilitates RFI detection and mitigation, fostering the coexistence of wireless communication and passive sensing technologies while establishing crucial standards.more » « less