skip to main content

Search for: All records

Creators/Authors contains: "Masui, K. W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) has emerged as the prime telescope for detecting fast radio bursts (FRBs). CHIME/FRB Outriggers will be a dedicated very-long-baseline interferometry (VLBI) instrument consisting of outrigger telescopes at continental baselines working with CHIME and its specialized real-time transient-search backend (CHIME/FRB) to detect and localize FRBs with 50 mas precision. In this paper, we present a minimally invasive clock stabilization system that effectively transfers the CHIME digital backend reference clock from its original GPS-disciplined ovenized crystal oscillator to a passive hydrogen maser. This enables us to combine the long-term stability and absolute time tagging of the GPS clock with the short- and intermediate-term stability of the maser to reduce the clock timing errors between VLBI calibration observations. We validate the system with VLBI-style observations of Cygnus A over a 400 m baseline between CHIME and the CHIME Pathfinder, demonstrating agreement between sky-based and maser-based timing measurements at the 30 ps rms level on timescales ranging from one minute to up to nine days, and meeting the stability requirements for CHIME/FRB Outriggers. In addition, we present an alternate reference clock solution for outrigger stations that lack the infrastructure to support a passive hydrogen maser.

  2. Abstract We report the discovery of seven new Galactic pulsars with the Canadian Hydrogen Intensity Mapping Experiment’s Fast Radio Burst (CHIME/FRB) backend. These sources were first identified via single pulses in CHIME/FRB, then followed up with CHIME/Pulsar. Four sources appear to be rotating radio transients, pulsar-like sources with occasional single-pulse emission with an underlying periodicity. Of those four sources, three have detected periods ranging from 220 ms to 2.726 s. Three sources have more persistent but still intermittent emission and are likely intermittent or nulling pulsars. We have determined phase-coherent timing solutions for the latter two. These seven sources are the first discovery of previously unknown Galactic sources with CHIME/FRB and highlight the potential of fast radio burst detection instruments to search for intermittent Galactic radio sources.