Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2023
-
Abstract Fast radio bursts (FRBs) are brief, energetic, typically extragalactic flashes of radio emission whose progenitors are largely unknown. Although studying the FRB population is essential for understanding how these astrophysical phenomena occur, such studies have been difficult to conduct without large numbers of FRBs and characterizable observational biases. Using the recently released catalog of 536 FRBs published by the Canadian Hydrogen Intensity Mapping Experiment/Fast Radio Burst (CHIME/FRB) collaboration, we present a study of the FRB population that also calibrates for selection effects. Assuming a Schechter function, we infer a characteristic energy cut-off of
erg and a differential power-law index ofγ = . Simultaneously, we infer a volumetric rate of [ (stat.) Gpc−3yr−1above a pivot energy of 1039erg and below a scattering timescale of 10 ms at 600 MHz, and find we cannot significantly constrain the cosmic evolution of the FRB population with star-formation rate. Modeling the host’s dispersion measure (DM) contribution as a log-normal distribution and assuming a total Galactic contribution of 80 pc cm−3, we find a median value of pc cm−3, comparable with values typically used in the literature. Proposed models for FRB progenitors shouldmore » -
Abstract The CHIME/FRB project has detected hundreds of fast radio bursts (FRBs), providing an unparalleled population to statistically probe the foreground media that they illuminate. One such foreground medium is the ionized halo of the Milky Way (MW). We estimate the total Galactic electron column density from FRB dispersion measures (DMs) as a function of Galactic latitude using four different estimators, including ones that assume spherical symmetry of the ionized MW halo and ones that imply more latitudinal variation in density. Our observation-based constraints of the total Galactic DM contribution for ∣
b ∣ ≥ 30°, depending on the Galactic latitude and selected model, span 87.8–141 pc cm−3. This constraint implies upper limits on the MW halo DM contribution that range over 52–111 pc cm−3. We discuss the viability of various gas density profiles for the MW halo that have been used to estimate the halo’s contribution to DMs of extragalactic sources. Several models overestimate the DM contribution, especially when assuming higher halo gas masses (∼3.5 × 1012M ⊙). Some halo models predict a higher MW halo DM contribution than can be supported by our observations unless the effect of feedback is increased within them, highlighting the impact of feedback processes in galaxymore » -
Free, publicly-accessible full text available August 15, 2023
-
Free, publicly-accessible full text available August 1, 2023
-
H
i constraints from the cross-correlation of eBOSS galaxies and Green Bank Telescope intensity mapsABSTRACT We present the joint analysis of Neutral Hydrogen (H i) Intensity Mapping observations with three galaxy samples: the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples from the eBOSS survey, and the WiggleZ Dark Energy Survey sample. The H i intensity maps are Green Bank Telescope observations of the redshifted $21\rm cm$ emission on $100 \, {\rm deg}^2$ covering the redshift range 0.6 < z < 1.0. We process the data by separating and removing the foregrounds present in the radio frequencies with FastI ICA. We verify the quality of the foreground separation with mock realizations, and construct a transfer function to correct for the effects of foreground removal on the H i signal. We cross-correlate the cleaned H i data with the galaxy samples and study the overall amplitude as well as the scale dependence of the power spectrum. We also qualitatively compare our findings with the predictions by a semianalytical galaxy evolution simulation. The cross-correlations constrain the quantity $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm opt}}$ at an effective scale keff, where $\Omega _\rm {H\,\small {I}}$ is the H i density fraction, $b_\rm {H\,\small {I}}$ is the H i bias, and $r_{\rm {H\,\small {I}},{\rm opt}}$ the galaxy–hydrogen correlation coefficient,more » -
Abstract We present a beam pattern measurement of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) made using the Sun as a calibration source. As CHIME is a pure drift-scan instrument, we rely on the seasonal north–south motion of the Sun to probe the beam at different elevations. This semiannual range in elevation, combined with the radio brightness of the Sun, enables a beam measurement that spans ∼7200 square degrees on the sky without the need to move the telescope. We take advantage of observations made near solar minimum to minimize the impact of solar variability, which is observed to be <10% in intensity over the observation period. The resulting data set is highly complementary to other CHIME beam measurements—both in terms of angular coverage and systematics—and plays an important role in the ongoing program to characterize the CHIME primary beam.
-
Free, publicly-accessible full text available July 14, 2023
-
Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB experiment has detected thousands of fast radio bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very long baseline interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10 m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical λ / D ≲ 30 mas. We provide an overview of the 10 m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for coherently delay referencing an FRB event. We find a localization of ∼200 mas is possible with the performance of the current system (single-baseline). Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that themore »
-
Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a drift scan radio telescope operating across the 400–800 MHz band. CHIME is located at the Dominion Radio Astrophysical Observatory near Penticton, BC, Canada. The instrument is designed to map neutral hydrogen over the redshift range 0.8–2.5 to constrain the expansion history of the universe. This goal drives the design features of the instrument. CHIME consists of four parallel cylindrical reflectors, oriented north–south, each 100 m × 20 m and outfitted with a 256-element dual-polarization linear feed array. CHIME observes a two-degree-wide stripe covering the entire meridian at any given moment, observing three-quarters of the sky every day owing to Earth’s rotation. An FX correlator utilizes field-programmable gate arrays and graphics processing units to digitize and correlate the signals, with different correlation products generated for cosmological, fast radio burst, pulsar, very long baseline interferometry, and 21 cm absorber back ends. For the cosmology back end, the
correlation matrix is formed for 1024 frequency channels across the band every 31 ms. A data receiver system applies calibration and flagging and, for our primary cosmological data product, stacks redundant baselines and integrates for 10 s. We present an overview of themore »