Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spear, John R (Ed.)ABSTRACT Microbes from terrestrial extreme environments enable testing of biosignature production in conditions relevant to astrobiological targets. Mars, which was likely more conducive to life during early warmer and wetter epochs, has inspired missions that search for signs of early life in the surficial rock record, including mineral or organic biosignatures. Microbial iron reduction is a common and ancient metabolism that may have also operated on other rocky celestial bodies. To investigate biosignature production during iron reduction, aShewanellasp. (strain BF02_Schw) isolated from a subglacial discharge known as Blood Falls, Antarctica, was incubated with the electron acceptor ferrihydrite (Fh). Biosignatures associated with Fh reduction were identified using a suite of techniques currently utilized or proposed for Mars missions, including X-ray diffraction and infrared, Mössbauer, and Raman spectroscopy. The biotic origin of features was validated by transcriptional changes observed between treatments with and without Fh and comparison to killed controls. In live treatments, Fh was reduced to magnetite and goethite, both detected in Martian lacustrine basins. Several soluble and volatile metabolites were also detected, including riboflavin and dimethyl sulfide (DMS), which could be astrobiological indicators of active microbial processes. While none of the identified biosignatures individually would serve as definitive proof of life (past or present), detecting concomitant features associated with known terrestrial biotic processes would provide compelling rationale for more targeted life detection missions. Terrestrial extremophiles can support the exploration of astrobiologically relevant microbial processes, validation of life detection instrumentation, and potentially the discovery of new biomarkers.IMPORTANCECulture-based experiments with terrestrial extremophiles can elucidate biosignatures that may be analogous to those produced under extraterrestrial conditions, and thus inform sampling and technology strategies for future missions. Here, we demonstrate the production of several biosignatures under iron-reducing conditions byShewanellasp. BF02_Schw, originally isolated from an Antarctic analog feature. These biosignatures could be detectable using flight-ready instrumentation. Growth experiments with terrestrial extremophiles can identify biosignatures measurable by current methodologies and inform the development and optimization of techniques for detecting extant or extinct life on other worlds.more » « lessFree, publicly-accessible full text available August 20, 2026
-
Reversible scavenging, the oceanographic process by which dissolved metals exchange onto and off sinking particles and are thereby transported to deeper depths, has been well established for the metal thorium for decades. Reversible scavenging both deepens the elemental distribution of adsorptive elements and shortens their oceanic residence times in the ocean compared to nonadsorptive metals, and scavenging ultimately removes elements from the ocean via sedimentation. Thus, it is important to understand which metals undergo reversible scavenging and under what conditions. Recently, reversible scavenging has been invoked in global biogeochemical models of a range of metals including lead, iron, copper, and zinc to fit modeled data to observations of oceanic dissolved metal distributions. Nonetheless, the effects of reversible scavenging remain difficult to visualize in ocean sections of dissolved metals and to distinguish from other processes such as biological regeneration. Here, we show that particle-rich “veils” descending from high-productivity zones in the equatorial and North Pacific provide idealized illustrations of reversible scavenging of dissolved lead (Pb). A meridional section of dissolved Pb isotope ratios across the central Pacific shows that where particle concentrations are sufficiently high, such as within particle veils, vertical transport of anthropogenic surface–dissolved Pb isotope ratios toward the deep ocean is manifested as columnar isotope anomalies. Modeling of this effect shows that reversible scavenging within particle-rich waters allows anthropogenic Pb isotope ratios from the surface to penetrate ancient deep waters on timescales sufficiently rapid to overcome horizontal mixing of deep water Pb isotope ratios along abyssal isopycnals.more » « less
An official website of the United States government
