Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plant growth generally responds positively to an increase in ambient temperature. Hence, most Earth system models project a continuous increase in vegetation cover in the future due to elevated temperatures. Over the last 40 years, a considerable warming trend has affected the alpine ecosystem across the Tibetan Plateau. However, we found vegetation growth in the moderately vegetated areas of the plateau were negatively related to the warming temperatures, thus resulting in a significant degradation of the vegetative cover (LAI: slope = −0.0026 per year, p < 0.05). The underlying mechanisms that caused the decoupling of the relationship between vegetation growth and warming in the region were elaborated with the analysis of water and energy variables in the ecosystem. Results indicate that high temperatures stimulated evapotranspiration and increased the water consumption of the ecosystem (with an influence coefficient of 0.34) in these degrading areas, significantly reducing water availability (with an influence coefficient of −0.68) and limiting vegetation growth. Moreover, the negative warming effect on vegetation was only observed in the moderately vegetated areas, as evapotranspiration there predominantly occupied a larger proportion of available water (compared to the wet and highly vegetated areas) and resulted in a greater increase in total water consumption inmore »Free, publicly-accessible full text available September 23, 2023
-
Abstract. Modelling the water transport along the soil–plant–atmosphere continuum is fundamental to estimating and predicting transpiration fluxes. A Finite-difference Ecosystem-scale Tree Crown Hydrodynamics model (FETCH3) for the water fluxes across the soil–plant–atmosphere continuum is presented here. The model combines the water transport pathways into one vertical dimension, and assumes that the water flow through the soil, roots, and above-ground xylem can be approximated as flow in porous media. This results in a system of three partial differential equations, resembling the Richardson–Richards equation, describing the transport of water through the plant system and with additional terms representing sinks and sources for the transfer of water from the soil to the roots and from the leaves to the atmosphere. The numerical scheme, developed in Python 3, was tested against exact analytical solutions for steady state and transient conditions using simplified but realistic model parameterizations. The model was also used to simulate a previously published case study, where observed transpiration rates were available, to evaluate model performance. With the same model setup as the published case study, FETCH3 results were in agreement with observations. Through a rigorous coupling of soil, root xylem, and stem xylem, FETCH3 can account for variable water capacitance, whilemore »