Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite decades of progress, much remains unknown about successional trajectories of carbon (C) cycling in north temperate forests. Drivers and mechanisms of these changes, including the role of different types of disturbances, are particularly elusive. To address this gap, we synthesized decades of data from experimental chronosequences and long-term monitoring at a well-studied, regionally representative field site in northern Michigan, USA. Our study provides a comprehensive assessment of changes in above- and belowground ecosystem components over two centuries of succession, links temporal dynamics in C pools and fluxes with underlying drivers, and offers several conceptual insights to the field of forest ecology. Our first advance shows how temporal dynamics in some ecosystem components are consistent across severe disturbances that reset succession and partial disturbances that slightly modify it: both of these disturbance types increase soil N availability, alter fungal community composition, and alter growth and competitive interactions between short-lived pioneer and longer-lived tree taxa. These changes in turn affect soil C stocks, respiratory emissions, and other belowground processes. Second, we show that some other ecosystem components have effects on C cycling that are not consistent over the course of succession. For example, canopy structure does not influence C uptake early in succession, but becomes important as stands develop, and the importance of individual structural properties changes over the course of two centuries of stand development. Third, we show that in recent decades, climate change is masking or overriding the influence of community composition on C uptake, while respiratory emissions are sensitive to both climatic and compositional change. In synthesis, we emphasize that time is not a driver of C cycling; it is a dimension within which ecosystem drivers such as canopy structure, tree and microbial community composition change. Changes in those drivers, not in forest age, are what control forest C trajectories, and those changes can happen quickly or slowly, through natural processes or deliberate intervention. Stemming from this view and a whole-ecosystem perspective on forest succession, we offer management applications from this work and assess its broader relevance to understanding long-term change in other north temperate forest ecosystems.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Urbanization causes changes in near-surface meteorology and rainfall-runoff relationships that threaten to place hydraulic stress on vegetation. The goal of this study was to investigate the differences in riparian zone tree hydration state, as indicated by leaf water potential, between an urban and a rural stream site, and to understand how the trees respond differently to precipitation events. At the rural stream site, the streambed was dry due to persistent drought conditions, whereas the urban stream site had established flow due to urban water inputs. The trees at the urban site were found to suffer less hydraulic stress than the trees at the rural site, as indicated by predawn leaf water potential measurements. Additionally, trees at the rural site were found to regulate stomatal openness to reduce transpiration on the day before rain, but not after, due to the presence of near-surface moisture introduced by the rain event. Trees at the urban site did not have to regulate stomatal openness before or after the rain, as the established flow in the stream provided consistent water access. These findings support the viability of protecting and preserving riparian ecosystems in urban settings.more » « less
-
Pfautsch, Sebastian (Ed.)Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI—for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are as follows. (i) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (ii) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (iii) Standardizing methodologies, processing and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices and early career training opportunities. (iv) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants’ physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Plant growth generally responds positively to an increase in ambient temperature. Hence, most Earth system models project a continuous increase in vegetation cover in the future due to elevated temperatures. Over the last 40 years, a considerable warming trend has affected the alpine ecosystem across the Tibetan Plateau. However, we found vegetation growth in the moderately vegetated areas of the plateau were negatively related to the warming temperatures, thus resulting in a significant degradation of the vegetative cover (LAI: slope = −0.0026 per year, p < 0.05). The underlying mechanisms that caused the decoupling of the relationship between vegetation growth and warming in the region were elaborated with the analysis of water and energy variables in the ecosystem. Results indicate that high temperatures stimulated evapotranspiration and increased the water consumption of the ecosystem (with an influence coefficient of 0.34) in these degrading areas, significantly reducing water availability (with an influence coefficient of −0.68) and limiting vegetation growth. Moreover, the negative warming effect on vegetation was only observed in the moderately vegetated areas, as evapotranspiration there predominantly occupied a larger proportion of available water (compared to the wet and highly vegetated areas) and resulted in a greater increase in total water consumption in a warmer condition (compared to dry areas with lower levels of vegetation cover). These findings highlight the risk of vegetation degradation in semi-arid areas, with the degree of vulnerability depending on the level of vegetation cover. Furthermore, results demonstrate the central role of evapotranspiration in regulating water stress intensity on vegetation under elevated temperatures.more » « less
-
Abstract. Modelling the water transport along the soil–plant–atmosphere continuum is fundamental to estimating and predicting transpiration fluxes. A Finite-difference Ecosystem-scale Tree Crown Hydrodynamics model (FETCH3) for the water fluxes across the soil–plant–atmosphere continuum is presented here. The model combines the water transport pathways into one vertical dimension, and assumes that the water flow through the soil, roots, and above-ground xylem can be approximated as flow in porous media. This results in a system of three partial differential equations, resembling the Richardson–Richards equation, describing the transport of water through the plant system and with additional terms representing sinks and sources for the transfer of water from the soil to the roots and from the leaves to the atmosphere. The numerical scheme, developed in Python 3, was tested against exact analytical solutions for steady state and transient conditions using simplified but realistic model parameterizations. The model was also used to simulate a previously published case study, where observed transpiration rates were available, to evaluate model performance. With the same model setup as the published case study, FETCH3 results were in agreement with observations. Through a rigorous coupling of soil, root xylem, and stem xylem, FETCH3 can account for variable water capacitance, while conserving mass and the continuity of the water potential between these three layers. FETCH3 provides a ready-to-use open access numerical model for the simulation of water fluxes across the soil–plant–atmosphere continuum.more » « less
-
Abstract Vegetation responds dynamically to local microclimates at both short and long time scales via mechanisms ranging from physiological behaviors, such as stomatal closure, to acclimation and adaptation. These responses influence the carbon, water, and energy cycles directly and are therefore crucial to understanding and predicting Earth system responses to a changing climate. Several recent studies have demonstrated that differences in microclimate can induce structural and functional acclimations, and potentially adaptations, within the same ecosystem. Such microclimate divergence can be caused by variability in slopes, disturbance history, or even localized resource availability. Ecosystem stressors such as low soil water availability, limited photoperiod, or high vapor pressure deficit have been shown to reveal the large impact of the subtle differences within these systems such as the number of sun versus shade leaves or differences in whole‐plant water acquisition and use. These findings highlight the linkages between plant canopy structure and ecosystem function, alongside the need for comprehensive analyses of vegetation within the broader context of its environment. This commentary addresses some of the key implications of ecosystem stress responses and accompanying acclimations across three ecosystem types for ecosystem ecology, plant physiology, ecohydrology and trait‐based modeling of vegetation‐climate dynamics.more » « less
-
Abstract Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services.more » « less