Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2025
-
Chromatic symmetric functions are well-studied symmetric functions in algebraic combinatorics that generalize the chromatic polynomial and are related to Hessenberg varieties and diagonal harmonics. Motivated by the Stanley--Stembridge conjecture, we show that the allowable coloring weights for indifference graphs of Dyck paths are the lattice points of a permutahedron Pλ, and we give a formula for the dominant weight λ. Furthermore, we conjecture that such chromatic symmetric functions are Lorentzian, a property introduced by Brändén and Huh as a bridge between discrete convex analysis and concavity properties in combinatorics, and we prove this conjecture for abelian Dyck paths. We extend our results on the Newton polytope to incomparability graphs of (3+1)-free posets, and we give a number of conjectures and results stemming from our work, including results on the complexity of computing the coefficients and relations with the ζ map from diagonal harmonics.more » « less
-
Generalized splines are an algebraic combinatorial framework that generalizes and unifies various established concepts across different fields, most notably the classical notion of splines and the topological notion of GKM theory. The former consists of piecewise polynomials on a combinatorial geometric object like a polytope, whose polynomial pieces agree to a specified degree of differentiability. The latter is a graph-theoretic construction of torus-equivariant cohomology that Shareshian and Wachs used to reformulate the well-known Stanley-Stembridge conjecture, a reformulation that was recently proven to hold by Brosnan and Chow and independently Guay-Paquet. This paper focuses on the theory of generalized splines. A generalized spline on a graph $$G$$ with each edge labeled by an ideal in a ring $$R$$ consists of a vertex-labeling by elements of $$R$$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the $$R$$-module of generalized splines and produce minimum generating sets for several families of graphs and edge-labelings: $1)$ for all graphs when the set of possible edge-labelings consists of at most two finitely-generated ideals, and $2)$ for cycles when the set of possible edge-labelings consists of principal ideals generated by elements of the form $(ax+by)^2$ in the polynomial ring $$\mathbb{C}[x,y]$$. We obtain the generators using a constructive algorithm that is suitable for computer implementation and give several applications, including contextualizing several results in the theory of classical (analytic) splines.more » « less
-
Abstract We expand upon the notion of equivariant log concavity and make equivariant log concavity conjectures for Orlik–Solomon algebras of matroids, Cordovil algebras of oriented matroids, and Orlik–Terao algebras of hyperplane arrangements. In the case of the Coxeter arrangement for the Lie algebra $$\mathfrak{s}\mathfrak{l}_n$$, we exploit the theory of representation stability to give computer-assisted proofs of these conjectures in low degree.more » « less
-
Exceptional sequences are certain sequences of quiver representations. We introduce a class of objects called strand diagrams and use these to classify exceptional sequences of representations of a quiver whose underlying graph is a type An Dynkin diagram. We also use variations of these objects to classify $$c$$-matrices of such quivers, to interpret exceptional sequences as linear extensions of explicitly constructed posets, and to give a simple bijection between exceptional sequences and certain saturated chains in the lattice of noncrossing partitions.more » « less