skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mathews Jr., Wesley N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The factorization method was introduced by Schrödinger in 1940. Its use in bound-state problems is widely known, including in supersymmetric quantum mechanics; one can create a factorization chain, which simultaneously solves a sequence of auxiliary Hamiltonians that share common eigenvalues with their adjacent Hamiltonians in the chain, except for the lowest eigenvalue. In this work, we generalize the factorization method to continuum energy eigenstates. Here, one does not generically have a factorization chain—instead all energies are solved using a “single-shot factorization”, enabled by writing the superpotential in a form that includes the logarithmic derivative of a confluent hypergeometric function. The single-shot factorization approach is an alternative to the conventional method of “deriving a differential equation and looking up its solution”, but it does require some working knowledge of confluent hypergeometric functions. This can also be viewed as a method for solving the Ricatti equation needed to construct the superpotential. 
    more » « less