Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2025
-
With the increase of uncertain and intermittent renewable energy supply on the grid, the power system has become more vulnerable to instability. In this paper, we develop a demand response strategy to improve power system small-signal stability. We pose the problem as an optimization problem wherein the total demand-responsive load is held constant at each time instance but shifted between different buses to improve small-signal stability, which is measured by small-signal stability metrics that are functions of subsets of the system’s eigenvalues, such as the smallest damping ratio. To solve the problem, we use iterative linear programming and generalized eigenvalue sensitivities. We demonstrate the approach via a case study that uses the IEEE 14-bus system. Our results show that shifting the load between buses, can improve a small-signal stability margin. We explore the use of models of different fidelity and find that it is important to include models of the automatic voltage regulators and power system stabilizers. In addition, we show that load shifting can achieve similar improvements to generation shifting and better improvement than simply tuning power system stabilizers.more » « lessFree, publicly-accessible full text available December 1, 2024
-
As the number of distributed energy resources participating in power networks increases, it becomes increasingly more important to actively manage network constraints to ensure safe operation. One proposed method that has gained significant attention and implementation, particularly in Australia, is the use of dynamic operating envelopes. Operating envelopes represent net export limits set by the system operator on every node in the distribution network that change as system conditions change. They are calculated using an optimal power flow problem, frequently using a linearization or relaxation of the nonlinear power flow equations. This paper presents two case studies and some numerical analysis to explain why a second order cone relaxation of the power flow equations will lead to ineffective operating envelopes. A modification to the objective function which allows the second order cone relaxation to nearly recover the solution to the nonlinear formulation is also presented.more » « lessFree, publicly-accessible full text available October 31, 2024
-
Power grid resource adequacy can be difficult to ensure with high penetrations of intermittent renewable energy. We explore enhancing resource adequacy by overbuilding renewables while modeling statistical correlations in renewable power at different sites. Overbuilding allows production during times of low power, and exploiting statistical correlations can reduce power variability and, subsequently, reduce needed renewable capacity. In this work, we present a stochastic optimization problem to size renewables and expand transmission while minimizing the expected dispatch cost. Our method uses statistical profiles of renewable production and embeds network constraints using the DC power flow equations. We assess our method’s effects on feasibility, load shedding, locational marginal prices, and generator curtailment. On the IEEE 9-bus system, we found that anti-correlation between generators reduced generation capacity needs with sufficient transmission. On the IEEE 30-bus system, we found that the optimal solution required significant overbuilding and curtailment of renewables regardless of the marginal cost of schedulable generation.more » « less
-
Growing penetrations of single-phase distributed generation such as rooftop solar photovoltaic (PV) systems can increase voltage unbalance in distribution grids. However, PV systems are also capable of providing reactive power compensation to reduce unbalance. In this paper, we compare two methods to mitigate voltage unbalance with solar PV inverters: a centralized optimization-based method utilizing a three-phase optimal power flow formulation and a distributed approach based on Steinmetz design. While the Steinmetz-based method is computationally simple and does not require extensive communication or full network data, it generally leads to less unbalance improvement and more voltage constraint violations than the optimization-based method. In order to improve the performance of the Steinmetz-based method without adding the full complexity of the optimization-based method, we propose an integrated method that incorporates design parameters computed from the set-points generated by the optimization-based method into the Steinmetz-based method. We test and compare all methods on a large three-phase distribution feeder with time-varying load and PV data. The simulation results indicate trade-offs between the methods in terms of computation time, voltage unbalance reduction, and constraint violations. We find that the integrated method can provide a good balance between performance and information/communication requirements.more » « less
-
Distribution network safety should not be compromised when distributed energy resources (DERs) provide balancing services to the grid. Often DER coordination is achieved through an aggregator. Thus, it is necessary to develop network-safe coordination schemes between the distribution network operator (i.e., the utility) and the aggregator. In this work, we introduce a framework in which the utility computes and sends a constraint set on the aggregators’ control commands to the DERs. We propose a policy to adjust the charging/discharging power of distributed batteries, which allows them to be incorporated into the framework. Also, we propose a data-driven approach for the utility to construct a constraint set with probabilistic guarantees on network safety. The proposed approach allows the DERs to provide network- safe services without heavy communication requirements or invasion of privacy. Numerical simulations with distributed batteries and thermostatically controlled loads show that the proposed approach achieves the desired level of network safety and outperforms two benchmark algorithms.more » « less