skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matthews, Philip_G D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Air sacs are a well-known aspect of insect tracheal systems, but have received little research attention. In this Commentary, we suggest that the study of the distribution and function of air sacs in tracheate arthropods can provide insights of broad significance. We provide preliminary phylogenetic evidence that the developmental pathways for creation of air sacs are broadly conserved throughout the arthropods, and that possession of air sacs is strongly associated with a few traits, including the capacity for powerful flight, large body or appendage size and buoyancy control. We also discuss how tracheal compression can serve as an additional mechanism for achieving advection in tracheal systems. Together, these patterns suggest that the possession of air sacs has both benefits and costs that remain poorly understood. New technologies for visualization and functional analysis of tracheal systems provide exciting approaches for investigations that will be of broad significance for understanding invertebrate evolution. 
    more » « less