skip to main content

Search for: All records

Creators/Authors contains: "Maughan, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present measurements of the scattered light intensity by aerosolized hematite aggregate particles. The measurements were made at a wavelength of 532 nm in the scattering angle range from 0.32 °to 157 °. Hematite has high values of the real and imaginary parts of the refractive index m = n + i κ= 3 + i0.5 at the studied wavelength. Scanning electron micrographs (SEM) indicated that the particles were aggregates whereas the optical microscope pictures showed that the aerosol had a bimodal distribution with effective mean diameters of roughly 1 and 10 μm. This is consistent with the light scattering results which displayed two Guinier regimes. The aggregates were composed of smaller grains with an approximate size of 200 nm. Ultra Small-Angle X-ray Scattering (USAXS) indicate that the aggregates were uniform and non-fractal. Mie calculations for a sphere equivalent to the aggregate size were compared to the experimentally observed results. The observed results showed an enhanced backscattering, whereas the Mie calculations did not due to the large imaginary part of the refractive index. Hematite aggregates were simulated by assuming they were composed of spherical monomers inside a spherical volume. Then the light scattering was calculated using the T-matrix method formore »these simulated aggregates. The calculated results show an enhanced backscattering. We present a dimensional analysis to estimate the extent of multiple scattering within the aggregate and find a correlation between the average number of scattering events within the aggregate and the enhancement in the backscattering.« less