- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Badzinski, Thomas D. (1)
-
Bahr, Gracie (1)
-
Brown, Margaret H. (1)
-
Clarke-Sather, Abigail (1)
-
Ehlebracht, Molly (1)
-
Maurer-Jones, Melissa (1)
-
Maurer-Jones, Melissa A. (1)
-
Pardoe, Elizabeth (1)
-
Teixeira França Alves, Paulo Henrique (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As rates of textile manufacturing and disposal escalate, the ramifications to health and the environment through water pollution, microplastic contaminant concentrations, and greenhouse gas emissions increases. Discarding over 15.4 million tons of textiles each year, the U.S. recycles less than 15%, sending the remainder to landfills and incinerators. Textile reuse is not sufficient to de-escalate the situation; recycling is necessary. Most textile recycling technologies from past decades are expensive, create low quality outputs, or are not industry scalable. For viability, textile recycling system designs must evolve with the rapid pace of a dynamic textile and fashion industry. For any design to be sustainable, it must also be flexible to adapt with technological, user, societal, and environmental condition advances. To this end flexible and sustainable design principles were compared: overlapping principles were combined and missing principles were added to create twelve overarching sustainable, flexible design principles (DfSFlex). The Fiber Shredder was designed and built with flexibility and sustainability as its goal and evaluated on how well it met DfSFlex principles. An evaluation of the Fiber Shredder's performance found that increased speed and processing time increases the generation of the desired output - fibers and yarns, manifesting the principles of Design for Separation in design and Facilitate Resource Recovery in processing. The development of this technology, with the application of sustainable and flexible design, fiber-to-fiber recycling using mechanical systems appears promising for maintaining value while repurposing textiles.more » « less
-
Brown, Margaret H.; Badzinski, Thomas D.; Pardoe, Elizabeth; Ehlebracht, Molly; Maurer-Jones, Melissa A. (, ACS Materials Au)Polylactic acid (PLA) and bioplastics alike have a designed degradability to avoid the environmental buildup that petroplastics have created. Yet, this designed biotic-degradation has typically been characterized in ideal conditions. This study seeks to relate the abiotic to the biotic degradation of PLA to accurately represent the degradation pathways bioplastics will encounter, supposing their improper disposal in the environment. Enzymatic hydrolysis was used to study the biodegradation of PLA with varying stages of photoaging. Utilizing a fluorescent tag to follow enzyme hydrolysis, it was determined that increasing the amount of irradiation yielded greater amounts of total enzymatic hydrolysis by proteinase K after 8 h of enzyme incubation. While photoaging of the polymers causes minimal changes in chemistry and increasing amounts of crystallinity, the trends in biotic degradation appear to primarily be driven by photoinduced reduction in molecular weight. The relationship between photoaging and enzyme hydrolysis appears to be independent of enzyme type, though commercial product degradation may be impacted by the presence of additives. Overall, this work reveals the importance of characterizing biodegradation with relevant samples that ultimately can inform optimization of production and disposal.more » « less
An official website of the United States government
