skip to main content

Search for: All records

Creators/Authors contains: "Mauritsen, Thorsten"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 19, 2023
  2. Abstract. Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated tospace. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing downthe consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model(MPI-ESM1.1) simulations of the period 1850–2005 with known forcing. We calculate ECS in each ensemble member usingenergy balance, yielding values ranging from 2.1 to 3.9K. The spread in the ensemble is related to the centralassumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomaliesin outgoing energy (either of terrestrial origin or reflected solar energy). We find thatthis assumption is not well supportedover the historical temperature record in the model ensemble or more recent satellite observations. We find that framingenergy balance in terms of 500hPa tropical temperature better describes the planet's energy balance.