skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maurya, Deepam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BSTRACT:Piezoelectricmaterialsare used to fabricateacoustictransducersforbubblechambersin searchfor particlesof dark matter.It has been shownthat bubblesinitiatedby nuclearrecoilsemit acousticradiationdistinguishablefrom the phasetransitionscausedby alpha-decay�themain backgroundnoisein such searches.However,these piezoelectricmaterialsmust exhibitultralowradioactivityto minimizethe neutronbackgroundfor dark matterdetectionwhilepossessinghigh acousticsensitivity.Here,for the first time, we demonstrateradiopurehigh-performancepiezoelectricceramicsmeetingthe criteriafor acousticsensing.The screeningofradiopureprecursorsis performedto identifythose with low238U,232Th, and210Pbcontents.Usingthe radiopureprecursors,piezoelectricceramicswith varyingcompositionsare synthesized,and their electromechanicalacousticsensingperformanceis evaluated.Multiplesynthesismodificationssuch as dopingand texturingare utilizedtotailor the piezoelectriccoefficientsof the piezoelectricceramics,and the relationshipbetweenthe piezoelectriccoefficientsand acousticsensingperformanceof the ceramicsis investigated.Acoustictransducersfabricatedusing texturedPb(Mg1/3Nb2/3)O3−PbTiO3(PMN−PT)ceramicsare found to exhibitsuperioracousticsensitivitydue totheir high piezoelectrictransductioncoefficient(d33×g33). This study demonstratesa usefulfigure of merit (FOM)for acousticsensingin bubblechambers 
    more » « less