skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mayya, Vaishakhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of community detection when there is covariate information about the node labels and one observes multiple correlated networks. We provide an asymptotic upper bound on the per-node mutual information as well as a heuristic analysis of a multivariate performance measure called the MMSE matrix. These results show that the combined effects of seemingly very different types of information can be characterized explicitly in terms of formulas involving low-dimensional estimation problems in additive Gaussian noise. Our analysis is supported by numerical simulations. 
    more » « less
  2. Community detection tasks have received a lot of attention across statistics, machine learning, and information theory with work concentrating on providing theoretical guarantees for different methodological approaches to the stochastic block model. Recent work on community detection has focused on modeling the spectral embedding of a network using Gaussian mixture models (GMMs) in scaling regimes where the ability to detect community memberships improves with the size of the network. However, these regimes are not very realistic. This paper provides tractable methodology motivated by new theoretical results for networks with non-vanishing noise. We present a procedure for community detection using novel GMMs that incorporate truncation and shrinkage effects. We provide empirical validation of this new representation as well as experimental results using a large email dataset. 
    more » « less
  3. The information-theoretic limits of community detection have been studied extensively for network models with high levels of symmetry or homogeneity. The contribution of this paper is to study a broader class of network models that allow for variability in the sizes and behaviors of the different communities, and thus better reflect the behaviors observed in real-world networks. Our results show that the ability to detect communities can be described succinctly in terms of a matrix of effective signal-to-noise ratios that provides a geometrical representation of the relationships between the different communities. This characterization follows from a matrix version of the I-MMSE relationship and generalizes the concept of an effective scalar signal-to-noise ratio introduced in previous work. We provide explicit formulas for the asymptotic per-node mutual information and upper bounds on the minimum mean-squared error. The theoretical results are supported by numerical simulations. 
    more » « less