Habitat loss is a primary driver of global biodiversity decline, negatively impacting many species, including native bees. One approach to counteract the consequences of habitat loss is through restoration, which includes the transformation of degraded or damaged habitats to increase biodiversity. In this review, we survey bee habitat restoration literature over the last 14 years to provide insights into how best to promote bee diversity and abundance through the restoration of natural landscapes in North America. We highlight relevant questions and concepts to consider throughout the various stages of habitat restoration projects, categorizing them into pre-, during-, and post-restoration stages. We emphasize the importance of planning species- and site-specific strategies to support bees, including providing floral and non-floral resources and increasing nest site availability. Lastly, we underscore the significance of conducting evaluations and long-term monitoring following restoration efforts. By identifying effective restoration methods, success indicators, and areas for future research, our review presents a comprehensive framework that can guide land managers during this urgent time for bee habitat restoration.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 5, 2025
-
Forecasting the impacts of changing climate on the phenology of plant populations is essential for anticipating and managing potential ecological disruptions to biotic communities. Herbarium specimens enable assessments of plant phenology across broad spatiotemporal scales. However, specimens are collected opportunistically, and it is unclear whether their collection dates – used as proxies of phenological stages – are closest to the onset, peak, or termination of a phenophase, or whether sampled individuals represent early, average, or late occurrences in their populations. Despite this, no studies have assessed whether these uncertainties limit the utility of herbarium specimens for estimating the onset and termination of a phenophase. Using simulated data mimicking such uncertainties, we evaluated the accuracy with which the onset and termination of population‐level phenological displays (in this case, of flowering) can be predicted from natural‐history collections data (controlling for biases in collector behavior), and how the duration, variability, and responsiveness to climate of the flowering period of a species and temporal collection biases influence model accuracy. Estimates of population‐level onset and termination were highly accurate for a wide range of simulated species' attributes, but accuracy declined among species with longer individual‐level flowering duration and when there were temporal biases in sample collection, as is common among the earliest and latest‐flowering species. The amount of data required to model population‐level phenological displays is not impractical to obtain; model accuracy declined by less than 1 day as sample sizes rose from 300 to 1000 specimens. Our analyses of simulated data indicate that, absent pervasive biases in collection and if the climate conditions that affect phenological timing are correctly identified, specimen data can predict the onset, termination, and duration of a population's flowering period with similar accuracy to estimates of median flowering time that are commonplace in the literature.
Free, publicly-accessible full text available April 12, 2025 -
Phenology varies widely over space and time because of its sensitivity to climate. However, whether phenological variation is primarily generated by rapid organismal responses (plasticity) or local adaptation remains unresolved. Here we used 1,038,027 herbarium specimens representing 1,605 species from the continental United States to measure flowering-time sensitivity to temperature over time (Stime) and space (Sspace). By comparing these estimates, we inferred how adaptation and plasticity historically influenced phenology along temperature gradients and how their contributions vary among species with different phenology and native climates and among ecoregions differing in species composition. Parameters Sspace and Stime were positively correlated (r = 0.87), of similar magnitude and more frequently consistent with plasticity than adaptation. Apparent plasticity and adaptation generated earlier flowering in spring, limited responsiveness in late summer and delayed flowering in autumn in response to temperature increases. Nonetheless, ecoregions differed in the relative contributions of adaptation and plasticity, from consistently greater importance of plasticity (for example, southeastern United States plains) to their nearly equal importance throughout the season (for example, Western Sierra Madre Piedmont). Our results support the hypothesis that plasticity is the primary driver of flowering-time variation along temperature gradients, with local adaptation having a widespread but comparatively limited role.more » « less
-
Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb, Streptanthus tortuosus, were scored both manually by human observers and by a mask R-CNN object detection model to (1) evaluate the concordance between ML and manually-derived phenological data and (2) determine whether ML-derived data can be used to reliably assess phenological patterns. The ML model generally underestimated the number of reproductive structures present on each specimen; however, when these counts were used to provide a quantitative estimate of the phenological stage of plants on a given sheet (i.e., the phenological index or PI), the ML and manually-derived PI’s were highly concordant. Moreover, herbarium specimen age had no effect on the estimated PI of a given sheet. Finally, including ML-derived PIs as predictor variables in phenological models produced estimates of the phenological sensitivity of this species to climate, temporal shifts in flowering time, and the rate of phenological progression that are indistinguishable from those produced by models based on data provided by human observers. This study demonstrates that phenological data extracted using machine learning can be used reliably to estimate the phenological stage of herbarium specimens and to detect phenological patterns.more » « less
-
Abstract Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.more » « less