skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Mazzali, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The Near Infrared (NIR) spectra of the Type IIb supernova (SN IIb) SN 2020acat, obtained at various times throughout the optical follow-up campaign, are presented here. The dominant He i 1.0830 and 2.0581 $\mu$m features are seen to develop flat-topped P-Cygni profiles as the NIR spectra evolve towards the nebular phase. The nature of the NIR helium peaks imply that there was a lack of mixing between the helium shell and the heavier inner ejecta in SN 2020acat. Analysis of the flat-top features showed that the boundary of the lower velocity of the helium shell was ∼3 − 4 × 103 km s−1. The NIR spectra of SN 2020acat were compared to both SN 2008ax and SN 2011dh to determine the uniqueness of the flat-topped helium features. While SN 2011dh lacked a flat-topped NIR helium profile, SN 2008ax displayed NIR helium features that were very similar to those seen in SN 2020acat, suggesting that the flat-topped feature is not unique to SN 2020acat and may be the product of the progenitors structure.

    more » « less

    A nebular spectrum of the peculiar, low-luminosity type Ia supernova 2010lp is modelled in order to estimate the composition of the inner ejecta and to illuminate the nature of this event. Despite having a normally declining light curve, SN 2010lp was similar spectroscopically to SN 1991bg at early times. However, it showed a very unusual double-peaked [O i] $\lambda \lambda \, 6300,6363$ emission at late times (Taubenberger et al.). Modelling of the nebular spectrum suggests that a very small amount of oxygen (∼0.05 M⊙), expanding at very low speed (≲ 2000 km s−1) is sufficient to reproduce the observed emission. The rest of the nebula is not too dissimilar from SN 1991bg, except that SN 2010lp is slightly more luminous. The double-peaked [O i] emission suggests that SN 2010lp may be consistent with the merger or collision of two low-mass white dwarfs. The low end of the SN Ia luminosity sequence is clearly populated by diverse events, where different channels may contribute.

    more » « less
  3. Abstract

    Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located atz= 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for anH0inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Δtab=116.69.3+10.8observer-frame days and Δtcb=48.64.0+3.6observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1σ), which corresponds to a ∼5.6% uncertainty contribution forH0assuming 70 km s−1Mpc−1. We also constrain the absolute magnification of each image toμa=4.31.8+1.6,μb=7.62.6+3.6,μc=6.41.5+1.6by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia.

    more » « less
  4. Abstract

    We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (MWD≈1.37M) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324MandM(58Ni) ≥0.06M. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible.

    more » « less

    We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN) 2021gno by the ‘Precision Observations of Infant Supernova Explosions’ (POISE) project, starting less than 2 d after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca ii] lines, SN 2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the centre of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly stripped massive star with an ejecta mass of $0.8\, M_\odot$ and a 56Ni mass of 0.024 M⊙. The initial cooling phase (first light-curve peak) is explained by the presence of an extended circumstellar material comprising ∼$10^{-2}\, {\rm M}_{\odot }$ with an extension of $1100\, R_{\odot }$. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and their implications in terms of the proposed progenitor scenarios for Calcium-rich transients.

    more » « less
  6. ABSTRACT Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of Mr  = −14.02 ± 0.21 mag, subsequently settling on a plateau which lasts for ∼120 d. Through the luminosity of the late light curve tail, we infer a synthesized 56Ni mass of (1.8 ± 0.5) × 10−3 M⊙. During the early evolutionary phases, optical spectra show a blue continuum ($T\, \gt $8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca ii, Fe ii, Sc ii, and Ba ii lines dominate the spectra. Hydrodynamical modelling of the observables yields $R\, \simeq$ 575 R⊙ for the progenitor star, with Mej  = 7.5 M⊙ and $E\, \simeq$ 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of Mr  = −16.57 ± 0.23 mag (correcting for AV = 1.92 mag), at the end of its remarkably long plateau (∼140 d). The estimated 56Ni mass is (1.4 ± 0.5) × 10−2 M⊙. The expansion velocities are compatible with those of other LL SNe IIP (few 103 km s−1). The physical parameters obtained through hydrodynamical modelling are $R\, \simeq$ 575 R⊙, Mej = 15.5 M⊙, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events. 
    more » « less

    We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.

    more » « less
  8. Abstract

    We present early-time photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2021aefx. The early-timeu-band light curve shows an excess flux when compared to normal SNe Ia. We suggest that the early excess blue flux may be due to a rapid change in spectral velocity in the first few days post explosion, produced by the emission of the CaiiH&K feature passing from theuto theBbands on the timescale of a few days. This effect could be dominant for all SNe Ia that have broad absorption features and early-time velocities over 25,000 km s−1. It is likely to be one of the main causes of early excessu-band flux in SNe Ia that have early-time high velocities. This effect may also be dominant in the UV filters, as well as in places where the SN spectral energy distribution is quickly rising to longer wavelengths. The rapid change in velocity can only produce a monotonic change (in flux-space) in theuband. For objects that explode at lower velocities, and have a more structured shape in the early excess emission, there must also be an additional parameter producing the early-time diversity. More early-time observations, in particular early spectra, are required to determine how prominent this effect is within SNe Ia.

    more » « less
  9. null (Ed.)
    ABSTRACT Stripped-envelope supernovae (SE-SNe) show a wide variety of photometric and spectroscopic properties. This is due to the different potential formation channels and the stripping mechanism that allows for a large diversity within the progenitors outer envelope compositions. Here, the photometric and spectroscopic observations of SN 2020cpg covering ∼130 d from the explosion date are presented. SN 2020cpg (z = 0.037) is a bright SE-SNe with the B-band peaking at MB = −17.75 ± 0.39 mag and a maximum pseudo-bolometric luminosity of Lmax = 6.03 ± 0.01 × 1042 erg s−1. Spectroscopically, SN 2020cpg displays a weak high- and low-velocity H α feature during the photospheric phase of its evolution, suggesting that it contained a detached hydrogen envelope prior to explosion. From comparisons with spectral models, the mass of hydrogen within the outer envelope was constrained to be ∼0.1 M⊙. From the pseudo-bolometric light curve of SN 2020cpg a 56Ni mass of MNi ∼ 0.27 ± 0.08 M⊙ was determined using an Arnett-like model. The ejecta mass and kinetic energy of SN 2020cpg were determined using an alternative method that compares the light curve of SN 2020cpg and several modelled SE-SNe, resulting in an ejecta mass of Mejc ∼ 5.5 ± 2.0 M⊙ and a kinetic energy of EK ∼ 9.0 ± 3.0 × 1051 erg. The ejected mass indicates a progenitor mass of 18−25 M⊙. The use of the comparative light curve method provides an alternative process to the commonly used Arnett-like model to determine the physical properties of SE-SNe. 
    more » « less
  10. Abstract We present 75 near-infrared (NIR; 0.8−2.5 μ m) spectra of 34 stripped-envelope core-collapse supernovae (SESNe) obtained by the Carnegie Supernova Project-II (CSP-II), encompassing optical spectroscopic Types IIb, Ib, Ic, and Ic-BL. The spectra range in phase from pre-maximum to 80 days past maximum. This unique data set constitutes the largest NIR spectroscopic sample of SESNe to date. NIR spectroscopy provides observables with additional information that is not available in the optical. Specifically, the NIR contains the strong lines of He i and allows a more detailed look at whether Type Ic supernovae are completely stripped of their outer He layer. The NIR spectra of SESNe have broad similarities, but closer examination through statistical means reveals a strong dichotomy between NIR “He-rich” and “He-poor” SNe. These NIR subgroups correspond almost perfectly to the optical IIb/Ib and Ic/Ic-BL types, respectively. The largest difference between the two groups is observed in the 2 μ m region, near the He i λ 2.0581 μ m line. The division between the two groups is not an arbitrary one along a continuous sequence. Early spectra of He-rich SESNe show much stronger He i λ 2.0581 μ m absorption compared to the He-poor group, but with a wide range of profile shapes. The same line also provides evidence for trace amounts of He in half of our SNe in the He-poor group. 
    more » « less