Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Superconductivity and exciton condensation are fundamental phenomena in condensed matter physics, associated with the condensation of electron–electron and electron–hole pairs, respectively, into coherent quantum states. In this study, we present evidence of a superconductor to exciton condensate transition within the context of the three-band Hubbard model of copper-oxide-like materials. As the electron–electron repulsion increases, the superconducting phase is superseded by exciton condensation. In support of theoretical predictions—not yet realized experimentally—we observe the coexistence of the two condensates in the vicinity of the transition where the quantum states become a superposition of electron–electron and electron–hole condensates. Coexistence is rigorously computed from large eigenvalues and their eigenvectors in both the two-electron reduced density matrix (2-RDM) and the particle-hole RDM, which we obtain from a direct variational ground-state energy minimization with respect to the 2-RDM by semidefinite programming. We further discern that adjacentdorbitals and interveningporbitals facilitate electron–electron pairing between copper orbitals, thereby supporting the superexchange mechanism for superconductivity. These observations suggest the feasibility of witnessing a superconductor to exciton condensate transition in copper-oxide analogs, bearing significant implications for identifying materials conducive to efficient transport processes.more » « less
-
Abstract Cavity-modified chemistry uses strong light-matter interactions to modify the electronic properties of molecules in order to enable new physical phenomena such as novel reaction pathways. As cavity chemistry often involves critical regions where configurations become nearly degenerate, the ability to treat multireference problems is crucial to understanding polaritonic systems. In this Letter, we show through the use of a unitary ansatz derived from the anti-Hermitian contracted Schrödinger equation that cavity-modified systems with strong correlation, such as the deformation of rectangular H4coupled to a cavity mode, can be solved efficiently and accurately on a quantum device. In contrast, while our quantum algorithm can be made formally exact, classical-computing methods as well as other quantum-computing algorithms often yield answers that are both quantitatively and qualitatively incorrect. Additionally, we demonstrate the current feasibility of the algorithm on near intermediate-scale quantum hardware by computing the dissociation curve of H2strongly coupled to a bosonic bath.more » « less
An official website of the United States government
