skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mazzuca, Guido"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider the discrete defocusing nonlinear Schrödinger equation in its integrable version, which is called defocusing Ablowitz–Ladik lattice. We consider periodic boundary conditions with period N and initial data sampled according to the Generalized Gibbs ensemble. In this setting, the Lax matrix of the Ablowitz–Ladik lattice is a random CMV-periodic matrix and it is related to the Killip-Nenciu Circular $$\beta $$ β -ensemble at high-temperature. We obtain the generalized free energy of the Ablowitz–Ladik lattice and the density of states of the random Lax matrix by establishing a mapping to the one-dimensional log-gas. For the Gibbs measure related to the Hamiltonian of the Ablowitz–Ladik flow, we obtain the density of states via a particular solution of the double-confluent Heun equation. 
    more » « less