skip to main content

Search for: All records

Creators/Authors contains: "Mazzucato, Anna L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data ρ ¯ ∈ H loc 1 ( R d ) , d ≥ 2 , we construct a divergence-free advecting velocity field v (depending on ρ ¯ ) for which the unique weak solution to the transport equation does not belong to H loc 1 ( R d ) for any positive time. The velocity field v is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space W s , p that does not embed into the Lipschitz class. The velocity field v is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in Ann. PDE , 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.
    Free, publicly-accessible full text available June 13, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. Abstract

    We consider the Kuramoto–Sivashinsky equation (KSE) on the two-dimensional torus in the presence of advection by a given background shear flow. Under the assumption that the shear has a finite number of critical points and there are linearly growing modes only in the direction of the shear, we prove global existence of solutions with data in$$L^2$$L2, using a bootstrap argument. The initial data can be taken arbitrarily large.

  4. Mascia, Corrado ; Terracina, Andrea ; Tesei, Alberto (Ed.)
    We study a model of dislocations in two-dimensional elastic media. In this model, the displacement satisfies the system of linear elasticity with mixed displacement-traction homogeneous boundary conditions in the complement of an open curve in a bounded planar domain, and has a specified jump, the slip, across the curve, while the traction is continuous there. The stiffness tensor is allowed to be anisotropic and inhomogeneous. We prove well-posedness of the direct problem in a variational setting, assuming the coefficients are Lipschitz continuous. Using unique continuation arguments, we then establish uniqueness in the inverse problem of determining the dislocation curve and the slip from a single measurement of the displacement on an open patch of the traction-free part of the boundary. Uniqueness holds when the elasticity operators admits a suitable decomposition and the curve satisfies additional geometric assumptions. This work complements the results in Arch. Ration. Mech. Anal., 236(1):71-111, (2020), and in Preprint arXiv:2004.00321, which concern three-dimensional isotropic elastic media.