skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "McAdam, Scott A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22–40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c. 410 ppm) CO2. We assessed if eCO2-triggered reductions in canopy conductance (gc) alter the response to soil or atmospheric drought and are reversible or lasting due to anatomical adjustments by exposing eCO2 seedlings to decreasing [CO2]. To quantify underlying mechanisms, we analyzed leaf abscisic acid (ABA) level, stomatal and leaf morphology, xylem structure, hydraulic efficiency, and hydraulic safety. Effects of eCO2 manifested in a strong reduction in leaf-level gc (−55%) not caused by ABA and not reversible under low CO2 (c. 200 ppm). Stomatal development and size were unchanged, while stomatal density increased (+18%). An increased vein-to-epidermis distance (+65%) suggested a larger leaf resistance to water flow. This was supported by anatomical adjustments of branch xylem having smaller conduits (−8%) and lower conduit lumen fraction (−11%), which resulted in a lower specific conductivity (−19%) and leaf-specific conductivity (−34%). These adaptations to CO2 did not change stomatal sensitivity to soil or atmospheric drought, consistent with similar xylem safety thresholds. In summary, we found reductions of gc under elevated CO2 to be reflected in anatomical adjustments and decreases in hydraulic conductivity. As these water savings were largely annulled by increases in leaf biomass, we do not expect alleviation of drought stress in a high CO2 atmosphere. 
    more » « less
  2. Martinez-Vilalta, Jordi (Ed.)
    Abstract The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels. 
    more » « less
  3. Summary Plant specialized 1,4-naphthoquinones present a remarkable case of convergent evolution. Species across multiple discrete orders of vascular plants produce diverse 1,4-naphthoquinones via one of several pathways using different metabolic precursors. Evolution of these pathways was preceded by events of metabolic innovation and many appear to share connections with biosynthesis of photosynthetic or respiratory quinones. Here, we sought to shed light on the metabolic connections linking shikonin biosynthesis with its precursor pathways and on the origins of shikonin metabolic genes. Downregulation of Lithospermum erythrorhizon geranyl diphosphate synthase (LeGPPS), recently shown to have been recruited from a cytoplasmic farnesyl diphosphate synthase (FPPS), resulted in reduced shikonin production and a decrease in expression of mevalonic acid and phenylpropanoid pathway genes. Next, we used LeGPPS and other known shikonin pathway genes to build a coexpression network model for identifying new gene connections to shikonin metabolism. Integrative in silico analyses of network genes revealed candidates for biochemical steps in the shikonin pathway arising from Boraginales-specific gene family expansion. Multiple genes in the shikonin coexpression network were also discovered to have originated from duplication of ubiquinone pathway genes. Taken together, our study provides evidence for transcriptional crosstalk between shikonin biosynthesis and its precursor pathways, identifies several shikonin pathway gene candidates and their evolutionary histories, and establishes additional evolutionary links between shikonin and ubiquinone metabolism. Moreover, we demonstrate that global coexpression analysis using limited transcriptomic data obtained from targeted experiments is effective for identifying gene connections within a defined metabolic network. 
    more » « less
  4. Melzer, Rainer (Ed.)
    Abstract The alternation of generations in land plants occurs between the sporophyte phase and the gametophyte phase. The sporophytes of seed plants develop self-maintained, multicellular meristems, and these meristems determine plant architecture. The gametophytes of seed plants lack meristems and are heterotrophic. In contrast, the gametophytes of seed-free vascular plants, including ferns, are autotrophic and free-living, developing meristems to sustain their independent growth and proliferation. Compared with meristems in the sporophytes of seed plants, the cellular mechanisms underlying meristem development in fern gametophytes remain largely unknown. Here, using confocal time-lapse live imaging and computational segmentation and quantification, we determined different patterns of cell divisions associated with the initiation and proliferation of two distinct types of meristems in gametophytes of two closely related Pteridaceae ferns, Pteris vittata and Ceratopteris richardii. Our results reveal how the simple timing of a switch between two meristems has considerable consequences for the divergent gametophyte morphologies of the two ferns. They further provide evolutionary insight into the function and regulation of gametophyte meristems in seed-free vascular plants. 
    more » « less