skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "McCarthy, Michael C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the hyperfine-resolved rotational spectrum of the gas-phase phenoxy radical in the 8−25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates that are yet undetected at radio wavelengths are discussed. 
    more » « less
    Free, publicly-accessible full text available May 16, 2025
  2. Recent advances in circumstellar metal chemistry and laser-coolable molecules have spurred interest in the spectroscopy and electronic properties of alkaline earth metal-bearing polyatomic molecules. We report the microwave rotational spectra of two members of this important chemical family, the linear magnesium- carbon chains MgC4H and MgC3N, detected with cavity Fourier transform microwave spectroscopy of a laser ablation-electric discharge expansion. The rotation, fine, and hyperfine parameters have been derived from the precise laboratory rest frequencies. These experimental results, combined with a theoretical quantum chemical analysis, confirm the recent identification of MgC4H and MgC3N in the circumstellar envelope of the evolved carbon-rich star IRC+10216. The spectroscopic data also provide insight into the structural and electronic properties that influence the metal-based optical cycling center in this unique class of laser-coolable polyatomics. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  3. We report the hyperfine-resolved rotational spectrum of gas-phase phenoxy radical in the 8–25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings has yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and in space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates yet undetected at radio wavelengths are discussed. 
    more » « less
    Free, publicly-accessible full text available January 17, 2025
  4. The unique optical cycling efficiency of alkaline earth metal–ligand molecules has enabled significant advances in polyatomic laser cooling and trapping. Rotational spectroscopy is an ideal tool for probing the molecular properties that underpin optical cycling, thereby elucidating the design principles for expanding the chemical diversity and scope of these platforms for quantum science. We present a comprehensive study of the structure and electronic properties in alkaline earth metal acetylides with high-resolution microwave spectra of 17 isotopologues of MgCCH, CaCCH, and SrCCH in their2Σ+ground electronic states. The precise semiexperimental equilibrium geometry of each species has been derived by correcting the measured rotational constants for electronic and zero-point vibrational contributions calculated with high-level quantum chemistry methods. The well-resolved hyperfine structure associated with the1,2H,13C, and metal nuclear spins provides further information on the distribution and hybridization of the metal-centered, optically active unpaired electron. Together, these measurements allow us to correlate trends in chemical bonding and structure with the electronic properties that promote efficient optical cycling essential to next-generation experiments in precision measurement and quantum control of complex polyatomic molecules.

     
    more » « less
  5. Abstract Cell divisions are accurately positioned to generate cells of the correct size and shape. In plant cells, the new cell wall is built in the middle of the cell by vesicles trafficked along an antiparallel microtubule and a microfilament array called the phragmoplast. The phragmoplast expands toward a specific location at the cell cortex called the division site, but how it accurately reaches the division site is unclear. We observed microtubule arrays that accumulate at the cell cortex during the telophase transition in maize (Zea mays) leaf epidermal cells. Before the phragmoplast reaches the cell cortex, these cortical-telophase microtubules transiently interact with the division site. Increased microtubule plus end capture and pausing occur when microtubules contact the division site-localized protein TANGLED1 or other closely associated proteins. Microtubule capture and pausing align the cortical microtubules perpendicular to the division site during telophase. Once the phragmoplast reaches the cell cortex, cortical-telophase microtubules are incorporated into the phragmoplast primarily by parallel bundling. The addition of microtubules into the phragmoplast promotes fine-tuning of the positioning at the division site. Our hypothesis is that division site-localized proteins such as TANGLED1 organize cortical microtubules during telophase to mediate phragmoplast positioning at the final division plane. 
    more » « less
  6. Abstract We report the detection of the lowest-energy conformer of E -1-cyano-1,3-butadiene ( E -1- C 4 H 5 CN ), a linear isomer of pyridine, using the fourth data reduction of the GBT Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) deep spectral survey toward TMC-1 with the 100 m Green Bank Telescope. We perform velocity stacking and matched-filter analyses using Markov chain Monte Carlo simulations and find evidence for the presence of this molecule at the 5.1 σ level. We derive a total column density of 3.8 − 0.9 + 1.0 × 10 10 cm −2 , which is predominantly found toward two of the four velocity components we observe toward TMC-1. We use this molecule as a proxy for constraining the gas-phase abundance of the apolar hydrocarbon 1,3-butadiene. Based on the three-phase astrochemical modeling code NAUTILUS and an expanded chemical network, our model underestimates the abundance of cyano-1,3-butadiene by a factor of 19, with a peak column density of 2.34 × 10 10 cm −2 for 1,3-butadiene. Compared to the modeling results obtained in previous GOTHAM analyses, the abundance of 1,3-butadiene is increased by about two orders of magnitude. Despite this increase, the modeled abundances of aromatic species do not appear to change and remain underestimated by one to four orders of magnitude. Meanwhile, the abundances of the five-membered ring molecules increase proportionally with 1,3-butadiene by two orders of magnitude. We discuss the implications for bottom-up formation routes to aromatic and polycyclic aromatic molecules. 
    more » « less
  7. Abstract Using data from the Green Bank Telescope (GBT) Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) survey, we report the first astronomical detection of the C 10 H − anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C 10 H − . From the velocity stacked data and the matched filter response, C 10 H − is detected at >9 σ confidence level at a column density of 4.04 − 2.23 + 10.67 × 10 11 cm −2 . A dedicated search for the C 10 H radical was also conducted toward TMC-1. In this case, the stacked molecular emission of C 10 H was detected at a ∼3.2 σ confidence interval at a column density of 2.02 − 0.82 + 2.68 × 10 11 cm −2 . However, as the determined confidence level is currently <5 σ , we consider the identification of C 10 H as tentative. The full GOTHAM data set was also used to better characterize the physical parameters including column density, excitation temperature, line width, and source size for the C 4 H, C 6 H, and C 8 H radicals and their respective anions, and the measured column densities were compared to the predictions from a gas/grain chemical formation model and from a machine learning analysis. Given the measured values, the C 10 H − /C 10 H column density ratio is ∼ 2.0 − 1.6 + 5.9 —the highest value measured between an anion and neutral species to date. Such a high ratio is at odds with current theories for interstellar anion chemistry. For the radical species, both models can reproduce the measured abundances found from the survey; however, the machine learning analysis matches the detected anion abundances much better than the gas/grain chemical model, suggesting that the current understanding of the formation chemistry of molecular anions is still highly uncertain. 
    more » « less