skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McClintock, James B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Increases in atmospheric CO2have led to more CO2entering the world’s oceans, decreasing the pH in a process called ’ocean acidification’. Low pH has been linked to impacts on macroalgal growth and stress, which can alter palatability to herbivores. Two common and ecologically important macroalgal species from the western Antarctic Peninsula, the unpalatableDesmarestia menziesiiand the palatablePalmaria decipiens, were maintained under three pH treatments: ambient (pH 8.1), near future (7.7) and distant future (7.3) for 52 days and 18 days, respectively. Discs ofP. decipiensor artificial foods containing extracts ofD. menziesiifrom each treatment were presented to the amphipodGondogeneia antarcticain feeding choice experiments. Additionally,G. antarcticaexposed to the different treatments for 55 days were used in a feeding assay with untreatedP. decipiens. ForD. menziesii, extracts from the ambient treatment were eaten significantly more by weight than the other treatments. Similarly,P. decipiensdiscs from the ambient and pH 7.7 treatments were eaten more than those from the pH 7.3 treatment. There was no significant difference in the consumption by treatedG. antarctica. These results suggest that ocean acidification may decrease the palatability of these macroalgae to consumers but not alter consumption byG. antarctica. 
    more » « less
    Free, publicly-accessible full text available June 17, 2026
  2. Abstract Ocean acidification refers to a decrease in the pH of the world’s oceans from the oceanic uptake of human-derived atmospheric CO2. Low pH is known to decrease the calcification and survival of many calcifying invertebrates. Shallow, hard bottom communities along the Western Antarctic Peninsula often have incredibly large numbers of invertebrate mesograzers that shelter on and are mutualists with the dominant brown macroalgae. The common amphipod speciesDjerboa furcipes,Gondogeneia antarctica,andProstebbingia graciliswere collected from the immediate vicinity of Palmer Station, Antarctica (64°46′S, 64°03′W) in January–February 2023 and maintained under three different pH treatments simulating ambient conditions (approximately pH 8.0), near-future conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 8 weeks. Molt number and mortality were monitored throughout the course of the experiment. After the 8 week exposure, amphipods were analyzed for their biochemical compositions including the Mg/Ca ratio of their exoskeletons. There was no significant difference in biochemical composition or survival among the pH treatments for any of the amphipod species. All three species, however, had significantly fewer total numbers of molts in the pH 7.3 treatment than in the ambient treatment. These results suggest that amphipods may be able to maintain their survival in decreased pH by reallocating energy into compensatory behaviors, such as acid–base regulation, and away from energy expensive processes like molting. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  3. The pH of the world’s oceans has decreased since the Industrial Revolution due to the oceanic uptake of increased atmospheric CO2in a process called ocean acidification. Low pH has been linked to negative impacts on the calcification, growth, and survival of calcifying invertebrates. Along the Western Antarctic Peninsula, dominant brown macroalgae often shelter large numbers of diverse invertebrate mesograzers, many of which are calcified. Mesograzer assemblages in this region are often composed of large numbers of amphipods which have key roles in Antarctic macroalgal communities. Understanding the impacts of acidification on amphipods is vital for understanding how these communities will be impacted by climate change. To assess how long-term acidification may influence the survival of different members in these assemblages, mesograzers, particularly amphipods, associated with the brown algaDesmarestia menziesiiwere collected from the immediate vicinity of Palmer Station, Antarctica (S64°46′, W64°03′) in January 2020 and maintained under three different pH treatments simulating ambient conditions (approximately pH 8.1), near-future conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 52 days then enumerated. Total assemblage number and the relative proportion of each species in the assemblage were found to be similar across the pH treatments. These results suggest that amphipod assemblages associated withD. menziesiimay be resistant to long-term exposure to decreased pH. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026
  4. Abstract Fleshy macroalgae dominate the hard bottom, shallow waters along the Western Antarctic Peninsula (WAP). Although there are numerous reports on their ecology, geographic distribution, and to a lesser extent, vertical (depth) distribution in the northern portions of the WAP, much less is known farther south along the central portion of the WAP. Here we provide the first report of the vertical distributions of brown and red fleshy macroalgae in this region based on scuba-derived collections at 14 study sites between southern Anvers Island (64.8°S, 64.4°W) in the north and central Marguerite Bay (68.7°S, 67.5°W) in the south. Although several overstory brown macroalgal species that can be common along the northern WAP includingDesmarestia ancepsandCystosphaera jacquinotiiare mostly absent from the central WAP, the vertical distributions of the brown macroalgaeDesmarestia menziesiiandHimantothallus grandifoliusare similar to the northern WAP even though their percent cover is much lower. Likewise, the vertical distribution of the 14 most widespread red macroalgae, where they occur, mirrored those known from the northern part of the WAP even though macroalgal cover, biomass, and total species richness declined markedly to the south across this region due to increasing sea ice concentrations. 
    more » « less
  5. Macroalgal forests dominate shallow hard bottom areas along the northern portion of the Western Antarctic Peninsula (WAP). Macroalgal biomass and diversity are known to be dramatically lower in the southern WAP and at similar latitudes around Antarctica, but few reports detail the distributions of macroalgae or associated macroinvertebrates in the central WAP. We used satellite imagery to identify 14 sites differing in sea ice coverage but similar in terms of turbidity along the central WAP. Fleshy macroalgal cover was strongly, negatively correlated with ice concentration, but there was no significant correlation between macroinvertebrate cover and sea ice. Overall community (all organisms) diversity correlated negatively with sea ice concentration and positively with fleshy macroalgal cover, which ranged from around zero at high ice sites to 80% at the lowest ice sites. Nonparametric, multivariate analyses resulted in clustering of macroalgal assemblages across most of the northern sites of the study area, although they differed greatly with respect to macroalgal percent cover and diversity. Analyses of the overall communities resulted in three site clusters corresponding to high, medium, and low fleshy macroalgal cover. At most northern sites, macroalgal cover was similar across depths, but macroalgal and macroinvertebrate distributions suggested increasing effects of ice scour in shallower depths towards the south. Hindcast projections based on correlations of ice and macroalgal cover data suggest that macroalgal cover at many sites could have been varying substantially over the past 40 years. Similarly, based on predicted likely sea ice decreases by 2100, projected increases in macroalgal cover at sites that currently have high ice cover and low macroalgal cover are substantial, often with only a future 15% decrease in sea ice. Such changes would have important ramifications to future benthic communities and to understanding how Antarctic macroalgae may contribute to future blue carbon sequestration. 
    more » « less
  6. null (Ed.)
  7. Foraging strategies in gentoo penguins ( Pygoscelis papua ) have been well studied (e.g. Croxall et al. 1988, Robinson & Hindell 1996, Lescroël et al. 2004, Takahashi et al. 2008, Xavier et al. 2017). The general consensus is this largest member of the three pygoscelid penguins displays both nearshore benthic and pelagic foraging tactics to consume combinations of crustaceans and fish. In a recent study, Carpenter-Kling et al. (2017) reported that gentoos at sub-Antarctic Marion Island displayed a novel foraging strategy that consisted of alternating typical lengthy foraging trips with much shorter nearshore afternoon trips. They suggest the latter foraging behaviour may be a response to suboptimal feeding conditions caused by local environmental change. This novel discovery reinforces the fact that, despite considerable study, not all foraging tactics in penguins have been documented. In this paper, we describe what we believe to be, yet another undocumented foraging tactic employed by gentoos. 
    more » « less
  8. The shallow benthos along the western Antarctic Peninsula supports brown macroalgal forests with dense amphipod assemblages, commonly including Gondogeneia antarctica (Amsler et al. 2014). Gondogeneia antarctica and most other amphipods are chemically deterred from consuming the macroalgae (Amsler et al. 2014). They primarily consume diatoms, other microalgae, filamentous macroalgae and a few undefended macroalgal species, including Palmaria decipiens (Aumack et al. 2017). Although unpalatable when alive, G. antarctica and other amphipods will consume the chemically defended brown algae Himantothallus grandifolius and Desmarestia anceps within a few weeks of death (Amsler et al. 2014). 
    more » « less