- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cai, Xuguang (2)
-
Eastes, Richard_W (2)
-
McClintock, William_E (2)
-
Qian, Liying (2)
-
Wang, Wenbin (2)
-
Aa, Ercha (1)
-
Aryal, Saurav (1)
-
Correira, J. (1)
-
Coster, Anthea (1)
-
Daniell, Robert_E (1)
-
Gan, Quan (1)
-
Karan, D_K (1)
-
Laskar, F_I (1)
-
Lin, Dong (1)
-
Pedatella, NicholasM (1)
-
Zhang, Shunrong (1)
-
Zhu, Qingyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report a new ionosphere phenomenon: Equatorial ionization anomaly (EIA) discontinuity (EIAD), based on OI 135.6 nm radiance observations from the Global Observations of Limb and Disk (GOLD), ground‐based total electron content maps and in‐situ ion density data from Constellation Observing System for Meteorology, Ionosphere, and Climate‐2. The EIAD occurs when the OI radiance of the EIA crest has a local minimum, at a fixed UT, with the radiance in the local longitude region being weaker than that on the east and west sides. In the GOLD field‐of‐view, EIAD follows the seasonal variations of EIA. EIAD appears more often over the Atlantic Ocean and Africa than over South America. It occurs more in the southern crest during the December solstice, and more in the northern crest during both equinoxes. EIAD can occur under both quiet and disturbed times.more » « less
-
Cai, Xuguang; Wang, Wenbin; Lin, Dong; Eastes, Richard_W; Qian, Liying; Zhu, Qingyu; Correira, J.; McClintock, William_E; Gan, Quan; Aryal, Saurav; et al (, Journal of Geophysical Research: Space Physics)Abstract The geomagnetic storm on February 3, 2022 caused the loss of 38 Starlink satellites of Space‐X. The Global‐scale Observations of the Limb and Disk (GOLD) observations and Multi‐Scale Atmosphere Geospace Environment (MAGE) model simulations are utilized to investigate the thermospheric composition responses to the Space‐X storm. The percentage difference of the GOLD observed thermospheric O and N2column density ratio (∑O/N2) between the storm time (February 3, Day‐of‐Year [DOY] 34) and quiet time (DOY 32) shows a depletion region in the local noon sector mid‐high latitudes in the southern hemisphere, which corresponds to the east side of GOLD field‐of‐view (FOV). This is different from the classic theory of thermospheric composition disturbance during geomagnetic storms, under which the ∑O/N2depletion is usually generated at local midnight and high latitudes, and thus, appear on the west side of GOLD FOV. MAGE simulations reproduce the observations qualitatively and indicate that the ∑O/N2depletion is formed due to strong upwelling in the local morning caused by strong Joule heating. Interestingly, enhanced equatorward winds appear near local midnight, but also in the local morning sector, which transports ∑O/N2depletion equatorward. The depletion corotates toward the local afternoon and is observed in the GOLD FOV. The equatorward winds in the local morning are due to the ion‐neutral coupling under the conditions of a dominant positive interplanetary magnetic field east‐west component (By) during the storm.more » « less