skip to main content


Search for: All records

Creators/Authors contains: "McComb, David W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We establish the synthesis, physical properties, and highly-frustrated magnetism of Mn2In2Se5and Mn2Ga2S5van der Waals crystals.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available August 9, 2024
  4. Abstract

    Creating materials that do not exist in nature can lead to breakthroughs in science and technology. Magnetic skyrmions are topological excitations that have attracted great attention recently for their potential applications in low power, ultrahigh density memory. A major challenge has been to find materials that meet the dual requirement of small skyrmions stable at room temperature. Here we meet both these goals by developing epitaxial FeGe films with excess Fe using atomic layer molecular beam epitaxy (MBE) far from thermal equilibrium. Our atomic layer design permits the incorporation of 20% excess Fe while maintaining a non-centrosymmetric crystal structure supported by theoretical calculations and necessary for stabilizing skyrmions. We show that the Curie temperature is well above room temperature, and that the skyrmions have sizes down to 15 nm as imaged by Lorentz transmission electron microscopy (LTEM) and magnetic force microscopy (MFM). The presence of skyrmions coincides with a topological Hall effect-like resistivity. These atomically tailored materials hold promise for future ultrahigh density magnetic memory applications.

     
    more » « less
  5. The molecule-based ferrimagnetic semiconductor vanadium tetracyanoethylene (V[TCNE] x , x [Formula: see text] 2) has garnered interest from the quantum information community due to its excellent coherent magnonic properties and ease of on-chip integration. Despite these attractive properties, a detailed understanding of the electronic structure and mechanism for long-range magnetic ordering have remained elusive due to a lack of detailed atomic and electronic structural information. Previous studies via x-ray absorption near edge spectroscopy and the extended x-ray absorption fine structure have led to various proposed structures, and in general, V[TCNE] x is believed to be a three-dimensional network of octahedrally coordinated V 2+ , each bonded to six TCNE molecules. Here, we elucidate the electronic structure, structural ordering, and degradation pathways of V[TCNE] x films by correlating calculations of density functional theory (DFT) with scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) of V[TCNE] x films. Low-loss EELS measurements reveal a bandgap and an excited state structure that agree quantitatively with DFT modeling, including an energy splitting between apical and equatorial TCNE ligands within the structure, providing experimental results directly backed by theoretical descriptions of the electronic structure driving the robust magnetic ordering in these films. Core-loss EELS confirms the presence of octahedrally coordinated V +2 atoms. Upon oxidation, changes in the C1s- π* peak indicate that C=C of TCNE is preferentially attacked. Furthermore, we identify a relaxation of the structural ordering as the films age. These results lay the foundation for a more comprehensive and fundamental understanding of magnetic ordering and dynamics in these classes of metal–ligand compounds. 
    more » « less
  6. Superlattices composed of either monoclinic μ-Fe2O3 or β-(AlxGa1−x)2O3 with β-Ga2O3 spacers are grown on (010) β-Ga2O3 substrates using plasma-assisted molecular beam epitaxy. High-resolution x-ray diffraction data are quantitatively fit using commercial dynamical x-ray diffraction software (LEPTOS) to obtain layer thicknesses, strain, and compositions. The strain state of β-(AlxGa1−x)2O3 and μ-Fe2O3 superlattices as characterized using reciprocal space maps in the symmetric (020) and asymmetric (420) diffraction conditions indicates coherent growths that are strained to the (010) β-Ga2O3 lattice. β-(AlxGa1−x)2O3 and μ-Fe2O3 superlattices grown at hotter substrate temperatures result in crystal structures with better coherency and reduced defects compared to colder growths. The growth rate of μ-Fe2O3 is ∼2.6 nm/min at Tsub = 700 °C and drops to ∼1.6 nm/min at Tsub = 800 °C due to increased Fe interdiffusion at hotter substrate temperatures. Scanning transmission electron microscopy data of a μ-Fe2O3 superlattice grown at Tsub = 700 °C confirm that there is significant diffusion of Fe atoms into β-Ga2O3 layers.

     
    more » « less
  7. Magnetic materials with kagome crystal structure exhibit rich physics, such as frustrated magnetism, skyrmion formation, topological flat bands, and Dirac/Weyl points. Until recently, most studies on kagome magnets have been performed on bulk crystals or polycrystalline films. Here, we report the atomic layer molecular beam epitaxy synthesis of high-quality thin films of topological kagome magnet Fe 3 Sn 2 . The structural and magnetic characterization of Fe 3 Sn 2 on epitaxial Pt(111) identifies highly ordered films with c-plane orientation and an in-plane magnetic easy axis. Studies on the local magnetic structure by anomalous Nernst effect imaging reveal in-plane oriented micrometer size domains. Superlattice structures consisting of Fe 3 Sn 2 and Fe 3 Sn are also synthesized by atomic layer molecular beam epitaxy, demonstrating the ability to modulate the sample structure at the atomic level. The realization of high-quality films by atomic layer molecular beam epitaxy opens the door to explore the rich physics of this system and investigate novel spintronic phenomena by interfacing Fe 3 Sn 2 with other materials. 
    more » « less
  8. Nanowire AlGaN III‐nitride LEDs are claimed as potential high‐efficiency solid‐state photon sources spanning to the short‐wavelength deep ultraviolet (UV). Nanowire LEDs (NWLEDs) emitting in the UV are compared with a transparent n‐AlGaN top electrode formed by coalescing the top region of nanowire–ensemble LEDs with commonly employed opaque conformal metallic electrodes used for nanowire‐based devices. The use of a transparent contact results in an increase in the wall plug efficiency of >25×, exceeding the expected increase due to enhanced photon‐extraction efficiency. Increased nanowire connectivity reduces the short‐circuit pathways, enabling higher device yields of relatively large‐area (>1 mm2) UV nanowire–ensemble LEDs. Despite these large relative improvements, the absolute output efficiency remains miniscule (<1 m%). Electroluminescence microscopy demonstrates that <0.1% of nanowires within the ensemble contribute to emission. The single‐nanowire efficiency is estimated and points toward improvement of the homogeneity of the injection current as a crucial step for realizing commercially viable UV NWLEDs.

     
    more » « less
  9. Cryogenic transmission electron microscopy is simply transmission electron microscopy conducted on specimens that are cooled in the microscope. The target temperature of the specimen might range from just below ambient temperature to less than 4 K. In general, as the temperature decreases, cost increases, especially below –77°C when liquid He is required. We have two reasons for wanting to cool the specimen—improving stability of the material or observing a material whose properties change at lower temperatures. Both types of study have a long history. The cause of excitement in this field today is that we have a perfect storm of research activity—electron microscopes are almost stable with minimal drift (we can correct what drift there is), we can prepare specimens from the bulk or build them up, we have spherical-aberration-corrected lenses and monochromated beams, we have direct-electron-detector cameras, and computers are becoming powerful enough to handle all the data we produce. 
    more » « less