skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCue, Ian D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a percolation model for face centered cubic binary alloys with chemical short-range order (SRO) to account for chemical ordering/clustering that occurs in nominally random solid solutions. We employ a lattice generation scheme that directly utilizes the first nearest neighbor Warren-Cowley SRO parameter to generate the lattice. We quantify the effects of SRO on the first nearest neighbor three-dimensional (3D) site percolation threshold using the large cell Monte Carlo renormalization group method and find that the 3D site percolation threshold is a function of the SRO parameter. We analyze the effects of SRO on the distribution of the total number of distinct clusters in the percolated structures and find that short-ranged clustering promotes the formation of a dominant spanning cluster. Furthermore, we find that the scaling exponents of percolation are independent of SRO. We also examine the effects of SRO on the 2D–3D percolation crossover and find that the thickness of the thin film for percolation crossover is a function of the SRO parameter. We combine these results to develop a percolation crossover model to understand the electrochemical passivation behavior in binary alloys. The percolation crossover model provides a theoretical framework to understand the critical composition of passivating elements for protective oxide formation. With this model, we show that SRO can be used as a processing parameter to improve corrosion resistance. 
    more » « less
  2. Abstract In alignment with the Materials Genome Initiative and as the product of a workshop sponsored by the US National Science Foundation, we define a vision for materials laboratories of the future in alloys, amorphous materials, and composite materials; chart a roadmap for realizing this vision; identify technical bottlenecks and barriers to access; and propose pathways to equitable and democratic access to integrated toolsets in a manner that addresses urgent societal needs, accelerates technological innovation, and enhances manufacturing competitiveness. Spanning three important materials classes, this article summarizes the areas of alignment and unifying themes, distinctive needs of different materials research communities, key science drivers that cannot be accomplished within the capabilities of current materials laboratories, and open questions that need further community input. Here, we provide a broader context for the workshop, synopsize the salient findings, outline a shared vision for democratizing access and accelerating materials discovery, highlight some case studies across the three different materials classes, and identify significant issues that need further discussion. Graphical abstract 
    more » « less