skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "McMillen, Colin D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single crystals of a new transition metal adelite-descloizite-type structure were synthesized using a high temperature (580 °C) high-pressure hydrothermal technique. Single crystal X-ray diffraction and energy dispersive X-ray analysis (EDX) were used to investigate the structure and elemental composition, respectively. SrNi(VO4)(OH) crystallizes in an acentric orthorhombic crystal system in the space group P212121 (no. 19); Z = 4, a = 5.9952(4) Å, b = 7.5844(4) Å, c = 9.2240(5) Å. The structure is comprised of a Ni–O–V framework where Sr2+ ions reside inside the channels. Single-crystal magnetic measurements display a significant anisotropy in both temperature- and field-dependent data. The temperature dependent magnetic measurement shows antiferromagnetic behavior at TN~8 K. Overall, the magnetic properties indicate the presence of competing antiferromagnetic and ferromagnetic interactions of SrNi(VO4)(OH). 
    more » « less
  2. A flexible polydentate bis(amidine) ligand LH 2 , LH 2 = {CH 2 NH( t Bu)CN-2-(6-MePy)} 2 , operates as a molecular lock for various coinage metal fragments and forms the dinuclear complexes [LH 2 (MCl) 2 ], M = Cu (1), Au (2), the coordination polymer [{(LH 2 ) 2 (py) 2 (AgCl) 3 }(py) 3 ] n (3), and the dimesityl-digold complex [LH 2 (AuMes) 2 ] (4) by formal insertion of MR fragments (M = Cu, Ag, Au; R = Cl, Mes) into the N–H⋯N hydrogen bonds of LH 2 in yields of 43–95%. Complexes 1, 2, and 4 adopt C 2 -symmetrical structures in the solid state featuring two interconnected 11-membered rings that are locked by two intramolecular N–H⋯R–M hydrogen bonds. QTAIM analyses of the computational geometry-optimized structures 1a, 2a, and 4a reveal 13, 11, and 22 additional bond critical points, respectively, all of which are related to weak intramolecular attractive interactions, predominantly representing dispersion forces, contributing to the conformational stabilization of the C 2 -symmetrical stereoisomers in the solid state. Variable-temperature 1 H NMR spectroscopy in combination with DFT calculations indicate a dynamic conformational interconversion between two C 2 -symmetrical ground state structures in solution (Δ G ‡c = 11.1–13.8 kcal mol −1 ), which is accompanied by the formation of an intermediate possessing C i symmetry that retains the hydrogen bonds. 
    more » « less
  3. Utilizing the N -heterocyclic chalcogenones hexahydro-1,3-bis(2,4,6-trimethylphenyl)-2 H -1,3-diazepine-2-thione ( SDiazMesS ) and hexahydro-1,3-bis(2,4,6-trimethylphenyl)-2 H -1,3-diazepine-2-selone ( SDiazMesSe ) as halogen-bond acceptors, a total of 24 new cocrystals were prepared. The solid-state structures of the parent molecules were also determined, along with those of their acetonitrile solvates. Through the reaction of the chalcogen atom with molecular diiodine, a variety of S—I—I and Se—I—I fragments were formed, spanning a wide range of I—I bond orders. With acetone as a reaction solvent, molecular diiodine causes the oxidative addition of acetone to the chalcogen atom, resulting in new C—S, C—Se and C—C covalent bonds under mild conditions. The common halogen-bond donors, iodopentafluorobenzene, 1,2-, 1,3- and 1,4-diiodotetrafluorobenzene, 1,3,5-trifluorotriiodobenzene and tetraiodoethylene resulted in halogen-bond-driven cocrystal formation. In most cases, the analogous SDiazMesS and SDiazMesSe cocrystals are isomorphic. 
    more » « less