skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McNutt, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditionally, linters are code analysis tools that help developers by flagging potential issues from syntax and logic errors to enforcing syntactical and stylistic conventions. Recently, linting has been taken as an interface metaphor, allowing it to be extended to more complex inputs, such as visualizations, which demand a broader perspective and alternative approach to evaluation. We explore a further extended consideration of linting inputs, and modes of evaluation, across the puritanical, neutral, and rebellious dimensions. We specifically investigate the potential for leveraging human computation in linting operations through Community Notes—crowd-sourced contextual text snippets aimed at checking and critiquing potentially accurate or misleading content on social media. We demonstrate that human-powered assessments not only identify misleading or error-prone visualizations but that integrating human computation enhances traditional linting by offering social insights. As is required these days, we consider the implications of building linters powered by Artificial Intelligence. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  2. null (Ed.)
    Users face many challenges in keeping their personal file collections organized. While current file-management interfaces help users retrieve files in disorganized repositories, they do not aid in organization. Pertinent files can be difficult to find, and files that should have been deleted may remain. To help, we designed KondoCloud, a file-browser interface for personal cloud storage. KondoCloud makes machine learning-based recommendations of files users may want to retrieve, move, or delete. These recommendations leverage the intuition that similar files should be managed similarly. We developed and evaluated KondoCloud through two complementary online user studies. In our Observation Study, we logged the actions of 69 participants who spent 30 minutes manually organizing their own Google Drive repositories. We identified high-level organizational strategies, including moving related files to newly created sub-folders and extensively deleting files. To train the classifiers that underpin KondoCloud's recommendations, we had participants label whether pairs of files were similar and whether they should be managed similarly. In addition, we extracted ten metadata and content features from all files in participants' repositories. Our logistic regression classifiers all achieved F1 scores of 0.72 or higher. In our Evaluation Study, 62 participants used KondoCloud either with or without recommendations. Roughly half of participants accepted a non-trivial fraction of recommendations, and some participants accepted nearly all of them. Participants who were shown the recommendations were more likely to delete related files located in different directories. They also generally felt the recommendations improved efficiency. Participants who were not shown recommendations nonetheless manually performed about a third of the actions that would have been recommended. 
    more » « less