skip to main content

Search for: All records

Creators/Authors contains: "McQuate, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. N-methyl-d-aspartate receptors (NMDARs) are fundamental coincidence detectors of synaptic activity necessary for the induction of synaptic plasticity and synapse stability. Adjusting NMDAR synaptic content, whether by receptor insertion or lateral diffusion between extrasynaptic and synaptic compartments, could play a substantial role defining the characteristics of the NMDAR-mediated excitatory postsynaptic current (EPSC), which in turn would mediate the ability of the synapse to undergo plasticity. Lateral NMDAR movement has been observed in dissociated neurons; however, it is currently unclear whether NMDARs are capable of lateral surface diffusion in hippocampal slices, a more physiologically relevant environment. To test for lateral mobility inmore »rat hippocampal slices, we rapidly blocked synaptic NMDARs using MK-801, a use-dependent and irreversible NMDAR blocker. Following a 5-min washout period, we observed a strong recovery of NMDAR-mediated responses. The degree of the observed recovery was proportional to the amount of induced blockade, independent of levels of intracellular calcium, and mediated primarily by GluN2B-containing NMDA receptors. These results indicate that lateral diffusion of NMDARs could be a mechanism by which synapses rapidly adjust parameters to fine-tune synaptic plasticity. NEW & NOTEWORTHY N-methyl-d-aspartate-type glutamate receptors (NMDARs) have always been considered stable components of synapses. We show that in rat hippocampal slices synaptic NMDARs are in constant exchange with extrasynaptic receptors. This exchange of receptors is mediated primarily by NMDA receptors containing GluN2B, a subunit necessary to undergo synaptic plasticity. Thus this lateral movement of synaptic receptors allows synapses to rapidly regulate the total number of synaptic NMDARs with potential consequences for synaptic plasticity.« less