skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McRaven, Leah T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hydrographic and velocity data from a 2018 winter survey of the western Iceland and Greenland Seas are used to investigate the ventilation of overflow water feeding Denmark Strait. We focus on the two general classes of overflow water: warm, saline Atlantic‐origin Overflow Water (AtOW) and cold, fresh Arctic‐origin Overflow Water (ArOW). The former is found predominantly within the East Greenland Current (EGC), while the latter resides in the interior of the Iceland and Greenland Seas. Progressing north to south, the properties of AtOW in the EGC are modified diapycnally during the winter, in contrast to summer when along‐isopycnal mixing dominates. The water column response to a 10‐days cold‐air outbreak was documented using repeat observations. During the event, the northerly winds pushed the freshwater cap of the EGC onshore, and convection modified the water at the seaward edge of the current. Lateral transfer of heat and salt from the core of AtOW in the EGC appears to have influenced some of this water mass transformation. The long‐term evolution of the mixed layers in the interior was investigated using a 1‐D mixing model. This suggests that, under strong atmospheric forcing, the densest component of ArOW can be ventilated in this region. Numerous anti‐cyclonic eddies spawned from the EGC were observed during the winter survey, revealing that these features can play differing roles in modifying/prohibiting the open‐ocean convection. 
    more » « less
  2. Abstract A region of exceptionally high macrofaunal benthic biomass exists in Barrow Canyon, implying a carbon export process that is locally concentrated. Here we offer an explanation for this benthic “hotspot” using shipboard data together with a set of dynamical equations. Repeat occupations of the Distributed Biological Observatory transect in Barrow Canyon reveal that when the northward flow is strong and the density front in the canyon is sharp, plumes of fluorescence and oxygen extend from the pycnocline to the seafloor in the vicinity of the hotspot. By solving the quasi‐geostrophic omega equation with an analytical flow field fashioned after the observations, we diagnose the vertical velocity in the canyon. This reveals that, as the along stream flow converges into the canyon, it drives a secondary circulation cell with strong downwelling on the cyclonic side of the northward flow. The downwelling quickly advects material from the pycnocline to the seafloor in a vertical plume analogous to those seen in the observations. The plume occurs only when the phytoplankton reside in the pycnocline, since the near‐surface vertical velocity is weak, also consistent with the observations. Using a wind‐based proxy to represent the strength of the northward flow and hence the pumping, in conjunction with a satellite‐derived phytoplankton source function, we construct a time series of carbon supply to the bottom of Barrow Canyon. 
    more » « less