skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Medeiros, Lia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A new image-reconstruction algorithm, Principal-component Interferometric Modeling (PRIMO), applied to the interferometric data of the M87 black hole collected with the Event Horizon Telescope (EHT), resulted in an image that reached the native resolution of the telescope array.PRIMOis based on learning a compact set of image building blocks obtained from a large library of high-fidelity, physics-based simulations of black hole images. It uses these building blocks to fill the sparse Fourier coverage of the data that results from the small number of telescopes in the array. In this paper, we show that this approach is readily justified. Since the angular extent of the image of the black hole and of its inner accretion flow is finite, the Fourier space domain is heavily smoothed, with a correlation scale that is at most comparable to the sizes of the data gaps in the coverage of Fourier space with the EHT. Consequently,PRIMOor other machine learning algorithms can faithfully reconstruct the images without the need to generate information that is unconstrained by the data within the resolution of the array. We also address the completeness of the eigenimages and the compactness of the resulting representation. We show thatPRIMOprovides a compact set of eigenimages that have sufficient complexity to recreate a broad set of images well beyond those in the training set. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  2. Abstract We introduceMahakala, aPython-based, modular, radiative ray-tracing code for curved spacetimes. We employ Google’sJAXframework for accelerated automatic differentiation, which can efficiently compute Christoffel symbols directly from the metric, allowing the user to easily and quickly simulate photon trajectories through non-Kerr spacetimes.JAXalso enablesMahakalato run in parallel on both CPUs and GPUs.Mahakalanatively uses the Cartesian Kerr–Schild coordinate system, which avoids numerical issues caused by the pole in spherical coordinate systems. We demonstrateMahakala’s capabilities by simulating 1.3 mm wavelength images (the wavelength of Event Horizon Telescope observations) of general relativistic magnetohydrodynamic simulations of low-accretion rate supermassive black holes. The modular nature ofMahakalaallows us to quantitatively explore how different regions of the flow influence different image features. We show that most of the emission seen in 1.3 mm images originates close to the black hole and peaks near the photon orbit. We also quantify the relative contribution of the disk, forward jet, and counterjet to 1.3 mm images. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026
  3. Abstract Light passing near a black hole can follow multiple paths from an emission source to an observer due to strong gravitational lensing. Photons following different paths take different amounts of time to reach the observer, which produces an echo signature in the image. The characteristic echo delay is determined primarily by the mass of the black hole, but it is also influenced by the black hole spin and inclination to the observer. In the Kerr geometry, echo images are demagnified, rotated, and sheared copies of the direct image and lie within a restricted region of the image. Echo images have exponentially suppressed flux, and temporal correlations within the flow make it challenging to directly detect light echoes from the total light curve. In this Letter, we propose a novel method to search for light echoes by correlating the total light curve with the interferometric signal at high spatial frequencies, which is a proxy for indirect emission. We explore the viability of our method using numerical general relativistic magnetohydrodynamic simulations of a near-face-on accretion system scaled to M87-like parameters. We demonstrate that our method can be used to directly infer the echo delay period in simulated data. An echo detection would be clear evidence that we have captured photons that have circled the black hole, and a high-fidelity echo measurement would provide an independent measure of fundamental black hole parameters. Our results suggest that detecting echoes may be achievable through interferometric observations with a modest space-based very long baseline interferometry mission. 
    more » « less
  4. Abstract The sparse interferometric coverage of the Event Horizon Telescope (EHT) poses a significant challenge for both reconstruction and model fitting of black hole images.PRIMOis a new principal components analysis-based algorithm for image reconstruction that uses the results of high-fidelity general relativistic, magnetohydrodynamic simulations of low-luminosity accretion flows as a training set. This allows the reconstruction of images that are consistent with the interferometric data and that live in the space of images that is spanned by the simulations.PRIMOfollows Monte Carlo Markov Chains to fit a linear combination of principal components derived from an ensemble of simulated images to interferometric data. We show thatPRIMOcan efficiently and accurately reconstruct synthetic EHT data sets for several simulated images, even when the simulation parameters are significantly different from those of the image ensemble that was used to generate the principal components. The resulting reconstructions achieve resolution that is consistent with the performance of the array and do not introduce significant biases in image features such as the diameter of the ring of emission. 
    more » « less
  5. Abstract We demonstrate the use of an eigenbasis that is derived from principal component analysis (PCA) applied on an ensemble of random-noise images that have a “red” power spectrum; i.e., a spectrum that decreases smoothly from large to small spatial scales. The pattern of the resulting eigenbasis allows for the reconstruction of images with a broad range of image morphologies. In particular, we show that this general eigenbasis can be used to efficiently reconstruct images that resemble possible astronomical sources for interferometric observations, even though the images in the original ensemble used to generate the PCA basis are significantly different from the astronomical images. We further show that the efficiency and fidelity of the image reconstructions depends only weakly on the particular parameters of the red-noise power spectrum used to generate the ensemble of images. 
    more » « less
  6. Abstract The Event Horizon Telescope recently captured images of the supermassive black hole in the center of the M87 galaxy, which shows a ring-like emission structure with the south side only slightly brighter than the north side. This relatively weak asymmetry in the brightness profile along the ring has been interpreted as a consequence of the low inclination of the observer (around 17° for M87), which suppresses the Doppler beaming and boosting effects that might otherwise be expected due to the nearly relativistic velocities of the orbiting plasma. In this work, we use a large suite of general relativistic magnetohydrodynamic simulations to reassess the validity of this argument. By constructing explicit counterexamples, we show that low inclination is a sufficient but not necessary condition for images to have low brightness asymmetry. Accretion flow models with high accumulated magnetic flux close to the black hole horizon (the so-called magnetically arrested disks) and low black hole spins have angular velocities that are substantially smaller than the orbital velocities of test particles at the same location. As a result, such models can produce images with low brightness asymmetry even when viewed edge on. 
    more » « less
  7. Abstract We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications. 
    more » « less
  8. null (Ed.)
    The Event Horizon Telescope recently captured images of the supermassive black hole in the center of the M87 galaxy, which show a ring-like emission structure with the South side only slightly brighter than the North side. This relatively weak asymmetry in the brightness profile along the ring has been interpreted as a consequence of the low inclination of the observer (around 17 deg for M87), which suppresses the Doppler beaming and boosting effects that might otherwise be expected due to the nearly relativistic velocities of the orbiting plasma. In this work, we use a large suite of general relativistic magnetohydrodynamic simulations to reassess the validity of this argument. By constructing explicit counter examples, we show that low-inclination is a sufficient but not necessary condition for images to have low brightness asymmetry. Accretion flow models with high accumulated magnetic flux close to the black hole horizon (the so-called magnetically arrested disks) and low black-hole spins have angular velocities that are substantially smaller than the orbital velocities of test particles at the same location. As a result, such models can produce images with low brightness asymmetry even when viewed edge on. 
    more » « less