Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Primordial black holes (PBHs), theorized to have originated in the early Universe, are speculated to be a viable form of dark matter. If they exist, they should be detectable through photometric and astrometric signals resulting from gravitational microlensing of stars in the Milky Way. Population Synthesis for Compact-object Lensing Events, orPopSyCLE, is a simulation code that enables users to simulate microlensing surveys, and is the first of its kind to include both photometric and astrometric microlensing effects, which are important for potential PBH detection and characterization. To estimate the number of observable PBH microlensing events, we modifyPopSyCLEto include a dark matter halo consisting of PBHs. We detail our PBH population model, and demonstrate ourPopSyCLE+ PBH results through simulations of the Optical Gravitational Lensing Experiment-IV (OGLE-IV) and Nancy Grace Roman Space Telescope (Roman) microlensing surveys. We provide a proof-of-concept analysis for adding PBHs intoPopSyCLE, and thus include many simplifying assumptions, such asfDM, the fraction of dark matter composed of PBHs, and , mean PBH mass. Assuming M⊙, we find ∼3.6fDMtimes as many PBH microlensing events than stellar evolved black hole events, a PBH average peak Einstein crossing time of ∼91.5 days, estimate on order of 102fDMPBH events within the 8 yr OGLE-IV results, and estimate Roman to detect ∼1000fDMPBH microlensing events throughout its planned microlensing survey.more » « lessFree, publicly-accessible full text available July 29, 2025
-
Abstract Microlensing events have historically been discovered throughout the Galactic bulge and plane by surveys designed solely for that purpose. We conduct the first multiyear search for microlensing events on the Zwicky Transient Facility (ZTF), an all-sky optical synoptic survey that observes the entire visible northern sky every few nights. We discover 60 high-quality microlensing events in the 3 yr of ZTF-I using the bulk lightcurves in the ZTF Public Data Release 5.19 of our events are found outside of the Galactic plane (∣b∣ ≥ 10°), nearly doubling the number of previously discovered events in the stellar halo from surveys pointed toward the Magellanic Clouds and the Andromeda galaxy. We also record 1558 ongoing candidate events as potential microlensing that can continue to be observed by ZTF-II for identification. The scalable and computationally efficient methods developed in this work can be applied to future synoptic surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope, as they attempt to find microlensing events in even larger and deeper data sets.more » « less
-
Abstract Jupiter-family comet (JFC) P/2021 HS (PANSTARRS) only exhibits a coma within a few weeks of its perihelion passage at 0.8 au, which is atypical for a comet. Here we present an investigation into the underlying cause using serendipitous survey detections and targeted observations. We find that the detection of the activity is caused by an extremely faint coma being enhanced by the forward scattering effect owing to the comet reaching a phase angle of ∼140°. The coma morphology is consistent with sustained, sublimation-driven activity produced by a small active area, ∼700 m 2 , one of the smallest values ever measured on a comet. The phase function of the nucleus shows a phase coefficient of 0.035 ± 0.002 mag deg −1 , implying an absolute magnitude of H = 18.31 ± 0.04 and a phase slope of G = − 0.13, with color consistent with typical JFC nuclei. Thermal observations suggest a nucleus diameter of 0.6–1.1 km, implying an optical albedo of 0.04–0.23, which is higher than typical cometary nuclei. An unsuccessful search for dust trail and meteor activity confirms minimal dust deposit along the orbit, totaling ≲10 8 kg. As P/2021 HS is dynamically unstable, similar to typical JFCs, we speculate that it has an origin in the trans-Neptunian region and that its extreme depletion of volatiles is caused by a large number of previous passages to the inner solar system. The dramatic discovery of the cometary nature of P/2021 HS highlights the challenges of detecting comets with extremely low activity levels. Observations at high phase angle, where forward scattering is pronounced, will help identify such comets.more » « less
-
Abstract We present the first gri -band period–luminosity (PL) and period–Wesenheit (PW) relations for 37 Type II Cepheids (TIICs) located in 18 globular clusters based on photometric data from the Zwicky Transient Facility. We also updated BVIJHK -band absolute magnitudes for 58 TIICs in 24 globular clusters using the latest homogeneous distances to the globular clusters. The slopes of g / r / i - and B / V / I -band PL relations are found to be statistically consistent when using the same sample of distance and reddening. We employed the calibration of ri -band PL/PW relations in globular clusters to estimate a distance to M31 based on a sample of ∼270 TIICs from the PAndromeda project. The distance modulus to M31, obtained using calibrated ri -band PW relation, agrees well with the recent determination based on classical Cepheids. However, distance moduli derived using the calibrated r - and i -band PL relations are systematically smaller by ∼0.2 mag, suggesting there are possible additional systematic errors on the PL relations. Finally, we also derive the period–color (PC) relations and for the first time the period–Q-index (PQ) relations, where the Q -index is reddening free, for our sample of TIICs. The PC relations based on ( r − i ) and near-infrared colors and the PQ relations are found to be relatively independent of the pulsation periods.more » « less
-
Abstract We present the discovery and analysis of SN 2022oqm, a Type Ic supernova (SN) detected <1 day after the explosion. The SN rises to a blue and short-lived (2 days) initial peak. Early-time spectral observations of SN 2022oqm show a hot (40,000 K) continuum with high ionization C and O absorption features at velocities of 4000 km s−1, while its photospheric radius expands at 20,000 km s−1, indicating a pre-existing distribution of expanding C/O material. After ∼2.5 days, both the spectrum and light curves evolve into those of a typical SN Ic, with line velocities of ∼10,000 km s−1, in agreement with the evolution of the photospheric radius. The optical light curves reach a second peak att≈ 15 days. Byt= 60 days, the spectrum of SN 2022oqm becomes nearly nebular, displaying strong Caiiand [Caii] emission with no detectable [Oi], marking this event as Ca-rich. The early behavior can be explained by 10−3M⊙of optically thin circumstellar material (CSM) surrounding either (1) a massive compact progenitor such as a Wolf–Rayet star, (2) a massive stripped progenitor with an extended envelope, or (3) a binary system with a white dwarf. We propose that the early-time light curve is powered by both the interaction of the ejecta with the optically thin CSM and shock cooling (in the massive star scenario). The observations can be explained by CSM that is optically thick to X-ray photons, is optically thick in the lines as seen in the spectra, and is optically thin to visible-light continuum photons that come either from downscattered X-rays or from the shock-heated ejecta. Calculations show that this scenario is self-consistent.more » « less
-
Abstract Modern surveys of gravitational microlensing events have progressed to detecting thousands per year, and surveys are capable of probing Galactic structure, stellar evolution, lens populations, black hole physics, and the nature of dark matter. One of the key avenues for doing this is the microlensing Einstein radius crossing time ( t E ) distribution. However, systematics in individual light curves as well as oversimplistic modeling can lead to biased results. To address this, we developed a model to simultaneously handle the microlensing parallax due to Earth's motion, systematic instrumental effects, and unlensed stellar variability with a Gaussian process model. We used light curves for nearly 10,000 OGLE-III and -IV Milky Way bulge microlensing events and fit each with our model. We also developed a forward model approach to infer the t E distribution by forward modeling from the data rather than using point estimates from individual events. We find that modeling the variability in the baseline removes a source of significant bias in individual events, and the previous analyses overestimated the number of t E > 100 day events due to their oversimplistic model ignoring parallax effects. We use our fits to identify the hundreds filling a regime in the microlensing parameter space that are 50% pure of black holes. Finally, we have released the largest-ever catalog of Markov Chain Monte Carlo parameter estimates for microlensing events.more » « less
-
Abstract Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star 1 , but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds 2 or binary interaction 3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star 4,5 . Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7 ). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.more » « less
-
Abstract The current Cepheid-calibrated distance ladder measurement of H 0 is reported to be in tension with the values inferred from the cosmic microwave background (CMB), assuming standard cosmology. However, some tip of the red giant branch (TRGB) estimates report H 0 in better agreement with the CMB. Hence, it is critical to reduce systematic uncertainties in local measurements to understand the Hubble tension. In this paper, we propose a uniform distance ladder between the second and third rungs, combining Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF) with a TRGB calibration of their absolute luminosity. A large, volume-limited sample of both calibrator and Hubble flow SNe Ia from the same survey minimizes two of the largest sources of systematics: host-galaxy bias and nonuniform photometric calibration. We present results from a pilot study using the existing TRGB distance to the host galaxy of ZTF SN Ia SN 2021rhu (aka ZTF21abiuvdk) in NGC7814. Combining the ZTF calibrator with a volume-limited sample from the first data release of ZTF Hubble flow SNe Ia, we infer H 0 = 76.94 ± 6.4 km s −1 Mpc −1 , an 8.3% measurement. The error budget is dominated by the single object calibrating the SN Ia luminosity in this pilot study. However, the ZTF sample includes already five other SNe Ia within ∼20 Mpc for which TRGB distances can be obtained with the Hubble Space Telescope. Finally, we present the prospects of building this distance ladder out to 80 Mpc with James Webb Space Telescope observations of more than 100 ZTF SNe Ia.more » « less