skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Medina, Fabian Javier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atmospheric water harvesting (AWH) has been extensively researched as a sustainable solution to current freshwater scarcity. Various bioinspired AWH surfaces have been developed to enhance water-harvesting performance, yet challenges remain in optimizing their structures. In this work, we report a dual-biomimetic AWH surface that combines beetle-inspired heterogeneous wettability with leaf-skeleton-based hierarchical microstructures on a rigid substrate. An authentic leaf skeleton innovatively serves as the mask during photolithography complemented by O2-plasma treatment, enabling precise design of superhydrophilic SiO2 structures with a hierarchy of vein orders forming reticulate meshes on a hydrophobic Si substrate. This design facilitates enhanced water collection through intricate reticulate meshes and directional droplet transport along the abundant multi-order veins. Such AWH surface shows a water-harvesting efficiency of 172 mg cm−2 h−1, increasing up to 62% and 58% over the pristine SiO2/Si wafer and Si wafer, respectively. Additionally, the role of structure orientation in the open-surface droplet transport is explored while the AWH surface is vertically placed during the water-harvesting process. This work highlights the potential of using meticulous natural designs, like leaf skeletons, to improve AWH surfaces, with broad applications in compact devices, such as on-chip evaporative cooling and planar microfluidics manipulation. 
    more » « less
    Free, publicly-accessible full text available January 6, 2026