skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meedeniya, Dulani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The concept of gaze object estimation predicts a bounding box that a person looks steadily. It is a applicable and contemporary technique in the retail industry. However, the existing datasets for gaze object prediction in retail is limited to controlled environments and do not consider retail product category area segmentation annotations. This paper proposes Retail Gaze, a dataset for gaze estimation in real-world retail environments. Retail Gaze is composed of 3,922 images of individuals looking at products in a retail environment, with 12 camera capture angles. Furthermore, we use state-of-the-art gaze estimation models to benchmark the Retail Gaze dataset and comprehensively analyze the results obtained. 
    more » « less
  2. Human gaze estimation is a widely used technique to observe human behavior. The rapid adaptation of deep learning techniques in gaze estimation has evolved human gaze estimation to many application domains. The retail industry is one domain with challenging unconstrained environmental conditions such as eye occlusion and personal calibration. This study presents a novel gaze estimation model for single-user 2D gaze estimation in a retail environment. Our novel architecture, inspired by the previous work in gaze following, models the scene and head feature and further utilizes a shifted grids technique to accurately predict a saliency map. Our results show that the model can effectively infer 2D gaze in a retail environment. We achieve state-of-the-art performance on Gaze On Objects (GOO) dataset. The obtained results have shown 25.2° angular error for gaze estimation. Furthermore, we provide a detailed analysis of the GOO dataset and comprehensively analyze the selected model feature extractor to support our results. 
    more » « less