- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chang, Heng-Sheng (1)
-
Gazzola, Mattia (1)
-
Gillette, Rhanor (1)
-
Halder, Udit (1)
-
Kim, Seung_Hyun (1)
-
Mehta, Prashant_G (1)
-
Naughton, Noel (1)
-
Shih, Chia-Hsien (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inspired by the unique neurophysiology of the octopus, a hierarchical framework is proposed that simplifies the coordination of multiple soft arms by decomposing control into high‐level decision‐making, low‐level motor activation, and local reflexive behaviors via sensory feedback. When evaluated in the illustrative problem of a model octopus foraging for food, this hierarchical decomposition results in significant improvements relative to end‐to‐end methods. Performance is achieved through a mixed‐modes approach, whereby qualitatively different tasks are addressed via complementary control schemes. Herein, model‐free reinforcement learning is employed for high‐level decision‐making, while model‐based energy shaping takes care of arm‐level motor execution. To render the pairing computationally tenable, a novel neural network energy shaping (NN‐ES) controller is developed, achieving accurate motions with time‐to‐solutions 200 times faster than previous attempts. The hierarchical framework is then successfully deployed in increasingly challenging foraging scenarios, including an arena littered with obstacles in 3D space, demonstrating the viability of the approach.more » « less
An official website of the United States government
