Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
We present a study of new 7.7–11.3 μm data obtained with theJames WebbSpace Telescope Mid-InfraRed Instrument in the starburst galaxy M 82. In particular, we focus on the dependency of the integrated CO(1–0) line intensity on the MIRI-F770W and MIRI-F1130W filter intensities to investigate the correlation between H2content and the 7.7 and 11.3 μm features from polycyclic aromatic hydrocarbons (PAH) in M 82’s outflows. To perform our analysis, we identify CO clouds using the archival12CO(J = 1 − 0) NOEMA moment 0 map within 2 kpc from the center of M 82, with sizes ranging between ∼21 and 270 pc; then, we compute the CO-to-PAH relations for the 306 validated CO clouds. On average, the power-law slopes for the two relations in M 82 are lower than what is seen in local main-sequence spirals. In addition, there is a moderate correlation betweenICO(1 − 0) − I7.7 μm/I11.3 μmfor some of the CO cloud groups analyzed in this work. Our results suggest that the extreme conditions in M 82 translate into CO not tracing the full budget of molecular gas in smaller clouds, perhaps as a consequence of photoionization and/or emission suppression of CO molecules due to hard radiation fields from the central starburst.more » « lessFree, publicly-accessible full text available March 1, 2026
-
The complex physical, kinematic, and chemical properties of galaxy centres make them interesting environments to examine with molecular line emission. We present new 2 − 4″ (∼75 − 150 pc at 7.7 Mpc) observations at 2 and 3 mm covering the central 50″ (∼1.9 kpc) of the nearby double-barred spiral galaxy NGC 6946 obtained with the IRAM Plateau de Bure Interferometer. We detect spectral lines from ten molecules: CO, HCN, HCO + , HNC, CS, HC 3 N, N 2 H + , C 2 H, CH 3 OH, and H 2 CO. We complemented these with published 1 mm CO observations and 33 GHz continuum observations to explore the star formation rate surface density Σ SFR on 150 pc scales. In this paper, we analyse regions associated with the inner bar of NGC 6946 – the nuclear region (NUC), the northern (NBE), and southern inner bar end (SBE) and we focus on short-spacing corrected bulk (CO) and dense gas tracers (HCN, HCO + , and HNC). We find that HCO + correlates best with Σ SFR , but the dense gas fraction ( f dense ) and star formation efficiency of the dense gas (SFE dense ) fits show different behaviours than expected from large-scale disc observations. The SBE has a higher Σ SFR , f dense , and shocked gas fraction than the NBE. We examine line ratio diagnostics and find a higher CO(2−1)/CO(1−0) ratio towards NBE than for the NUC. Moreover, comparison with existing extragalactic datasets suggests that using the HCN/HNC ratio to probe kinetic temperatures is not suitable on kiloparsec and sub-kiloparsec scales in extragalactic regions. Lastly, our study shows that the HCO + /HCN ratio might not be a unique indicator to diagnose AGN activity in galaxies.more » « less
An official website of the United States government
