skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meijers, Maud JM"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lateral movement of lithospheric fragments along strike-slip faults in response to collision (escape tectonics) has characterized convergent settings since the onset of plate tectonics and is a mechanism for the formation of new plates. The Anatolian plate was created by the sequential connection of strike-slip faults following ≥10 m.y. of distributed deformation that ultimately localized into plate-bounding faults. Thermochronology data and seismic images of lithosphere structure near the East Anatolian fault zone (EAFZ) provide insights into the development of the new plate and escape system. Low-temperature thermochronology ages of rocks in and near the EAFZ are significantly younger than in other fault zones in the region, e.g., apatite (U-Th)/He: 11–1 Ma versus 27–13 Ma. Young apatite (U-Th)/He ages and thermal history modeling record thermal resetting along the EAFZ over the past ~5 m.y. and are interpreted to indicate thermal activity triggered by strike-slip faulting in the EAFZ as it formed as a through-going, lithosphere-scale structure. The mechanism for EAFZ formation may be discerned from S-wave velocity images from the Continental Dynamics–Central Anatolian Tectonics (CD-CAT) seismic experiment. These images indicate that thin but strong Arabian lithospheric mantle extends ~50–150 km north beneath Anatolian crust and would have been located near the present surficial location of the Bitlis-Zagros suture zone (co-located with the EAFZ in our study area) at ca. 5 Ma. Underthrusting of strong Arabian lithosphere facilitated localization of the EAFZ and thus was a fundamental control on the formation of the Anatolian plate and escape system. 
    more » « less