skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Meirose, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conceptual design of a nested mirror assembly for neutron anti-neutron oscillation measurements is presented, with the specific focus of potential advantages for fabrication of large-scale optics. 
    more » « less
  2. Abstract The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with a sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes progress towards a conceptual design report for NNBAR. The design of a moderator, neutron reflector, beamline, shielding and annihilation detector is reported. The simulations used form part of a model which will be used for optimisation of the experiment design and quantification of its sensitivity. 
    more » « less
  3. NA (Ed.)
    Description of planned and possible experiments for the European Spallation Source. 
    more » « less
  4. null (Ed.)
  5. Abstract

    A search for leptoquark pair production decaying into$$te^- \bar{t}e^+$$te-t¯e+or$$t\mu ^- \bar{t}\mu ^+$$tμ-t¯μ+in final states with multiple leptons is presented. The search is based on a dataset ofppcollisions at$$\sqrt{s}=13~\text {TeV} $$s=13TeVrecorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$$^{-1}$$-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from ab-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into$$te^{-}$$te-($$t\mu ^{-}$$tμ-), the corresponding lower limit on the scalar mixed-generation leptoquark mass$$m_{\textrm{LQ}_{\textrm{mix}}^{\textrm{d}}}$$mLQmixdis at 1.58 (1.59) TeV and on the vector leptoquark mass$$m_{{\tilde{U}}_1}$$mU~1at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  6. A search for high-mass resonances decaying into aτ-lepton and a neutrino using proton-proton collisions at a center-of-mass energy ofs=13TeVis presented. The full run 2 data sample corresponding to an integrated luminosity of139fb1recorded by the ATLAS experiment in the years 2015–2018 is analyzed. Theτ-lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between theτ-lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on theWτνproduction cross section. HeavyWvector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard ModelWboson. For nonuniversal couplings,Wbosons are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross section times branching ratio are determined as a function of the lower threshold on the transverse mass of theτ-lepton and missing transverse momentum.

    <supplementary-material><permissions><copyright-statement>© 2024 CERN, for the ATLAS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available June 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10512851-atlas-experiment-cern-large-hadron-collider-description-detector-configuration-run3" itemprop="url"> <span class='span-link' itemprop="name">The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1088/1748-0221/19/05/P05063" target="_blank" title="Link to document DOI">https://doi.org/10.1088/1748-0221/19/05/P05063  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Aad, G</span> <span class="sep">; </span><span class="author" itemprop="author">Abbott, B</span> <span class="sep">; </span><span class="author" itemprop="author">Abbott, DC</span> <span class="sep">; </span><span class="author" itemprop="author">Abdallah, J</span> <span class="sep">; </span><span class="author" itemprop="author">Abeling, K</span> <span class="sep">; </span><span class="author" itemprop="author">Abidi, SH</span> <span class="sep">; </span><span class="author" itemprop="author">Aboulhorma, A</span> <span class="sep">; </span><span class="author" itemprop="author">Abovyan, S</span> <span class="sep">; </span><span class="author" itemprop="author">Abramowicz, H</span> <span class="sep">; </span><span class="author" itemprop="author">Abreu, H</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-05-01">May 2024</time> , Journal of Instrumentation) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>Abstract

    The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of  ℒ = 2 × 1034cm-2s-1was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of  ℒ = 2 × 1034cm-2s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  7. A<sc>bstract</sc>

    A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons (eorμ) with the same electric charge, or three leptons. The analysis uses 139 fb1ofppcollision data at$$ \sqrt{s} $$s= 13 TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and withoutR-parity conservation are considered. In topologies with intermediate states including eitherWhorWZpairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a naturalR-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for anR-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.

     
    more » « less
  8. Abstract

    A search for pair-produced vector-like quarks using events with exactly one lepton (eor$$\mu $$μ), at least four jets including at least oneb-tagged jet, and large missing transverse momentum is presented. Data from proton–proton collisions at a centre-of-mass energy of$$\sqrt{s}=$$s=13 $$\text {TeV}$$TeV, recorded by the ATLAS detector at the LHC from 2015 to 2018 and corresponding to an integrated luminosity of 139 fb$$^{-1}$$-1, are analysed. Vector-like partnersTandBof the top and bottom quarks are considered, as is a vector-likeXwith charge$$+5/3$$+5/3, assuming their decay into aW,Z, or Higgs boson and a third-generation quark. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section ofTandBquark pairs as a function of their mass are derived for various decay branching ratio scenarios. The strongest lower limits on the masses are 1.59 $$\text {TeV}$$TeVassuming mass-degenerate vector-like quarks and branching ratios corresponding to the weak-isospin doublet model, and 1.47 $$\text {TeV}$$TeV(1.46 $$\text {TeV}$$TeV) for exclusive$$T \rightarrow Zt$$TZt($$B/X \rightarrow Wt$$B/XWt) decays. In addition, lower limits on theTandBquark masses are derived for all possible branching ratios.

     
    more » « less