skip to main content

Search for: All records

Creators/Authors contains: "Melaimi, Mohand"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 2, 2024
  2. A novel family of cyclic (alkyl)(amino)carbenes, which we name cyclic (amino)(barrelene)carbenes (CABCs) is reported. The key synthetic step involves an intramolecular [4+2] cyclization of an anthracene derivative with an alkyne. This synthetic approach allows for the attachment of both aryl and alkyl groups on the nitrogen atom. When used as ligand, two of the barrelene hydrogens are in close contact with the metal, which could stabilize low valent catalytic intermediates. 
    more » « less
  3. Abstract

    Cyclic (Alkyl)(Amino)Carbenes (CAACs) have become forceful ligands for gold due to their ability to form very strong ligand‐metal bonds. Inspired by the success of Auranofin and other gold complexes as antitumor agents, we have studied the cytotoxicity of bis‐ and mono‐CAAC‐gold complexes on different cancer cell lines: HeLa (cervical cancer), A549 (lung cancer), HT1080 (fibrosarcoma) and Caov‐3 (ovarian cancer). Further investigations aimed at elucidating their mechanism of action are described. This includes quantification of affinities for TrxR, evaluation of their bioavailability and determination of associated cell death process. Moreover, Transmission Electron Microscopy (TEM) was used to study morphological changes upon exposure. Noticeably, a significant reduction in non‐specific binding to serum proteins was observed with CAAC complexes when compared to Auranofin. These results confirm the potential of CAAC‐gold complexes in biological environments, which may result in more specific drug‐target interactions and decreased side effects.

    more » « less