Data-driven approaches to identify geophysical signals have proven beneficial in high dimensional environments where model-driven methods fall short. GNSS offers a source of unsaturated ground motion observations that are the data currency of ground motion forecasting and rapid seismic hazard assessment and alerting. However, these GNSS-sourced signals are superposed onto hardware-, location- and time-dependent noise signatures influenced by the Earth’s atmosphere, low-cost or spaceborne oscillators, and complex radio frequency environments. Eschewing heuristic or physics based models for a data-driven approach in this context is a step forward in autonomous signal discrimination. However, the performance of a data-driven approach depends upon substantial representative samples with accurate classifications, and more complex algorithm architectures for deeper scientific insights compound this need. The existing catalogs of high-rate (≥1Hz) GNSS ground motions are relatively limited. In this work, we model and evaluate the probabilistic noise of GNSS velocity measurements over a hemispheric network. We generate stochastic noise time series to augment transferred low-noise strong motion signals from within 70 kilometers of strong events (≥ MW 5.0) from an existing inertial catalog. We leverage known signal and noise information to assess feature extraction strategies and quantify augmentation benefits. We find a classifier model trained on this expanded pseudo-synthetic catalog improves generalization compared to a model trained solely on a real-GNSS velocity catalog, and offers a framework for future enhanced data driven approaches.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
ABSTRACT The Puerto Rico–Virgin Islands (PRVI) block lies within the Northern Caribbean Plate Boundary Zone—a zone accommodating stresses between the larger North America and Caribbean plates. Data from Global Positioning System (GPS) sites throughout the PRVI block have been used to confirm the existence of a distinct microblock in the southwest. It is no coincidence that this portion of the PRVI block is the epicentral region of the 7 January 2020 Mw 6.4 earthquake and the ensuing seismic sequence. Prior to the mainshock, the southwestern Puerto Rico (SWPR) region exhibited most of the onland seismic activity. The 2020–2021 SWPR earthquake seismic sequence has been characterized by having an atypical aftershock decay distribution occurring along multiple faults. As a result, fault parameters of the 7 January 2020 mainshock have been poorly defined by conventional seismic methods. Here, we present results from campaign and continuous GPS sites in SWPR, and compare GPS-derived displacements to those computed from the U.S. Geological Survey National Earthquake Information Center (NEIC) focal mechanism. We conclude that irrespective of which nodal plane is used, the observed coseismic displacements from GPS differ from those predicted using a simple elastic model and the NEIC focal mechanism. We infer based on these observations that the complex mainshock rupture resulted in a suboptimal double-couple solution.
-
Abstract Rapid earthquake magnitude estimation from real-time space-based geodetic observation streams provides an opportunity to mitigate the impact of large and potentially damaging earthquakes by issuing low-latency warnings prior to any significant and destructive shaking. Geodetic contributions to earthquake characterization and rapid magnitude estimation have evolved in the last 20 yr, from post-processed seismic waveforms to, more recently, improved capacity of regional geodetic networks enabled real-time Global Navigation Satellite System seismology using precise point positioning (PPP) displacement estimates. In addition, empirical scaling laws relating earthquake magnitude to peak ground displacement (PGD) at a given hypocentral distance have proven effective in rapid earthquake magnitude estimation, with an emphasis on performance in earthquakes larger than ∼Mw 6.5 in which near-field seismometers generally saturate. Although the primary geodetic contributions to date in earthquake early warning have focused on the use of 3D position estimates and displacements, concurrent efforts in time-differenced carrier phase (TDCP)-derived velocity estimates also have demonstrated that this methodology has utility, including similarly derived empirical scaling relationships. This study builds upon previous efforts in quantifying the ambient noise of three-component ground-displacement and ground-velocity estimates. We relate these noise thresholds to expected signals based on published scaling laws. Finally, we compare the performance of PPP-derived PGD to TDCP-derived peak ground velocity (PGV), given several rich event datasets. Our results indicate that TDCP-PGV is more likely than PPP-PGD to detect intermediate magnitude (∼Mw 5.0–6.0) earthquakes, albeit with greater magnitude estimate uncertainty and across smaller epicentral distances. We conclude that the computationally lightweight TDCP-derived PGV magnitude estimation is complementary to PPP-derived PGD magnitude estimates, which could be produced at the network edge at high rates and with increased sensitivity to ground motion than current PPP estimates.more » « less
-
Abstract An efficient and cost‐effective near‐field tsunami warning system is crucial for coastal communities. The existing tsunami forecasting system is based on offshore Deep‐Ocean Assessment and Reporting of Tsunamis and Global Navigation Satellite System (GNSS) buoys which are not affordable for many countries. A potential cost‐effective solution is to utilize position data from ships traveling in coastal and offshore regions. In this study, we examine the feasibility of using ship‐borne GNSS data in tsunami forecasting. We carry out synthetic experiments by applying a data assimilation (DA) method with ship position (elevation and velocity) data. Our findings show that the DA method can recover the reference model with high accuracy if a dense network of ship elevation data is used. However, the use of ship velocity data alone is unable to recover the reference model. In addition, we carried out sensitivity studies of the DA method to the ship spatial distribution. We find that a 20 km gap between the ships works well in terms of accuracy and computational time for the example source model that we explored. The highest accuracy is obtained when data from a sufficient number of ships traveling in and around the tsunami source area are available.