skip to main content

Search for: All records

Creators/Authors contains: "Mendelson, Dana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. {} 
    more » « less
  2. Abstract

    We consider the focusing energy-critical quintic nonlinear wave equation in 3D Euclidean space. It is known that this equation admits a one-parameter family of radial stationary solutions, called solitons, which can be viewed as a curve in $ \dot H^s_x({{\mathbb{R}}}^3) \times H^{s-1}_x({{\mathbb{R}}}^3)$, for any $s> 1/2$. By randomizing radial initial data in $ \dot H^s_x({{\mathbb{R}}}^3) \times H^{s-1}_x({{\mathbb{R}}}^3)$ for $s> 5/6$, which also satisfy a certain weighted Sobolev condition, we produce with high probability a family of radial perturbations of the soliton that give rise to global forward-in-time solutions of the focusing nonlinear wave equation that scatter after subtracting a dynamically modulated soliton. Our proof relies on a new randomization procedure using distorted Fourier projections associated to the linearized operator around a fixed soliton. To our knowledge, this is the 1st long-time random data existence result for a focusing wave or dispersive equation on Euclidean space outside the small data regime.

    more » « less