Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 5, 2025
-
Free, publicly-accessible full text available April 2, 2025
-
Context. The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact H ii (UCHii ) regions were identified in SgrB2’s central hot cores, SgrB2(M) and SgrB2(N). Aims. Our aim is to characterize the properties of the H ii regions in the entire SgrB2 cloud. Comparing the H ii regions and the dust cores, we aim to depict the evolutionary stages of different parts of SgrB2. Methods. We use the Very Large Array in its A, CnB, and D configurations, and in the frequency band C (~6GHz) to observe the whole SgrB2 complex. Using ancillary VLA data at 22.4 GHz and ALMA data at 96 GHz, we calculated the physical parameters of the UCH ii regions and their dense gas environment. Results. We identify 54 UCHii regions in the 6 GHz image, 39 of which are also detected at 22.4 GHz. Eight of the 54 UCHii regions are newly discovered. The UCHii regions have radii between 0.006 pc and 0.04 pc, and have emission measure between 10 6 pc cm 6 and 10 9 pc cm 6 . The UCHii regions are ionized by stars of types from B0.5 to O6. We found a typical gas density of ~10 6 –10 9 cm 3 around the UCH ii regions. The pressure of the UCH ii regions and the dense gas surrounding them are comparable. The expansion timescale of these UCHii regions is determined to be ~10 4 –10 5 yr. The percentage of the dust cores that are associated with H ii regions are 33%, 73%, 4%, and 1% for SgrB2(N), SgrB2(M), SgrB2(S), and SgrB2(DS), respectively. Two-thirds of the dust cores in SgrB2(DS) are associated with outflows. Conclusions. The electron densities of the UCHii regions we identified are in agreement with that of typical UCHii regions, while the radii are smaller than those of the typical UCHii regions. The dust cores in SgrB2(M) are more evolved than in SgrB2(N). The dust cores in SgrB2(DS) are younger than in SgrB2(M) or SgrB2(N).more » « less
-
null (Ed.)Global airline networks play a key role in the global importation of emerging infectious diseases. Detailed information on air traffic between international airports has been demonstrated to be useful in retrospectively validating and prospectively predicting case emergence in other countries. In this paper, we use a well-established metric known as effective distance on the global air traffic data from IATA to quantify risk of emergence for different countries as a consequence of direct importation from China, and compare it against arrival times for the first 24 countries. Using this model trained on official first reports from WHO, we estimate time of arrival (ToA) for all other countries. We then incorporate data on airline suspensions to recompute the effective distance and assess the effect of such cancellations in delaying the estimated arrival time for all other countries. Finally we use the infectious disease vulnerability indices to explain some of the estimated reporting delays.more » « less
-
A bstract A search for “emerging jets” produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed using data collected by the CMS experiment corresponding to an integrated luminosity of 138 fb
− 1. This search examines a hypothetical dark quantum chromodynamics (QCD) sector that couples to the standard model (SM) through a scalar mediator. The scalar mediator decays into an SM quark and a dark sector quark. As the dark sector quark showers and hadronizes, it produces long-lived dark mesons that subsequently decay into SM particles, resulting in a jet, known as an emerging jet, with multiple displaced vertices. This search looks for pair production of the scalar mediator at the LHC, which yields events with two SM jets and two emerging jets at leading order. The results are interpreted using two dark sector models with different flavor structures, and exclude mediator masses up to 1950 (1950) GeV for an unflavored (flavor-aligned) dark QCD model. The unflavored results surpass a previous search for emerging jets by setting the most stringent mediator mass exclusion limits to date, while the flavor-aligned results provide the first direct mediator mass exclusion limits to date.Free, publicly-accessible full text available July 1, 2025 -
A bstract A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in proton-proton collisions at
= 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb$$ \sqrt{s} $$ − 1collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 <m N< 3 GeV and decay lengths in the range 10− 2<c τN< 104mm, where τNis the N proper mean lifetime. Signal events are defined by the signature B →ℓ BNX; N →ℓ ± π∓, where the leptonsℓ Bandℓ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of theℓ ± π∓invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, |V N|2, and onc τN are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit|V N| 2< 2.0× 10− 5is obtained atm N= 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on|V N| 2for masses 1 <m N< 1.7 GeV are the most stringent from a collider experiment to date.Free, publicly-accessible full text available June 1, 2025 -
Thedecay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of. Normalizing to thedecay mode leads to a branching fraction of, a value that is consistent with the standard model prediction.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available June 1, 2025